首页|基于WPT和SVM的大坝强震损伤预警研究

基于WPT和SVM的大坝强震损伤预警研究

扫码查看
该研究针对大坝强震监测中损伤预警的关键性,提出了一种新型的结构损伤预警模型.该模型以小波包累积能量比作为特征提取工具,用以精确捕捉大坝结构在强震中的动态特性;并采用支持向量机(SVM)作为智能分类器,对提取的特征进行分析,实现损伤状态的准确预警.通过在多组模拟数据上的应用,证明了该模型对复杂损伤模式识别的有效性和高精度.研究结果表明,所提模型能够为大坝损伤预警提供更为可靠的理论依据和实践指导,对保障大坝工程安全具有重要意义.
Research on early warning of strong earthquake damage in dams based on WPT and SVM
In this study,a new structural damage early warning model is proposed in view of the criticality of dam-age early warning in dam strong earthquake monitoring.The model uses the cumulative energy ratio of wavelet pack-et as a feature extraction tool to accurately capture the dynamic characteristics of the dam structures in strong earth-quakes,and uses the Support Vector Machine(SVM)as an intelligent classifier to analyze the extracted features to achieve accurate early warning of damage state.Through the application of multiple sets of simulation data,the effec-tiveness and high accuracy of the model for complex damage pattern recognition are proved.The results show that the proposed model can provide a more reliable theoretical basis and practical guidance for dam damage warning,and is of great significance for ensuring the safty of dam engineering.

Early warning of dam damageWavelet packet transform(WPT)Cumulative energy ratioSupport vec-tor machine(SVM)

王国闻、郭永刚

展开 >

西藏农牧学院水利土木工程学院,林芝 860000

大坝损伤预警 小波包变换(WPT) 累积能量比 支持向量机(SVM)

国家自然科学基金项目西藏自治区重点研发计划项目西藏农牧学院研究生创新计划

U21A20158XZ202201ZY0034GYJS2023-49

2024

西藏科技
西藏科技信息研究所

西藏科技

影响因子:0.202
ISSN:1004-3403
年,卷(期):2024.46(5)
  • 7