首页|基于YOLO模型对小目标检测综述

基于YOLO模型对小目标检测综述

扫码查看
因YOLO模型出色的性能表现而被广泛应用于工业、农业等多个领域.并且YOLO系列基础模型由YOLOv1发展到YOLOv8的过程中不断增强YOLO多尺度融合的能力和优化模型的网络结构,来提升模型性能.而YOLO的其他分支模型则是在YOLO系列的基础模型上,对基础模型的损失函数、主干网络以及多任务等方面进行改进提升.文章主要通过讨论YOLO模型的发展历程,通过研究和探讨YOLO模型对图像中的小目标检测的精准度以及通过对唐卡图像中的缺陷的检测精准度来研究YOLO模型是否能够检测西藏文物.例如YOLO模型是否能够正确识别并分类藏式银器和铜器,由于这两种物体的样式较多,花纹差别较小,因此对模型的性能要求较高.文章对模型的改进重点和策略做了讨论和研究,在学习模式上,YOLO模型可在无监督或弱监督方向寻找改进点.
A review of small target detection based on YOLO model
Due to the excellent performance of the YOLO model,it has been widely used in many fields such as in-dustry and agriculture.In the process of developing the YOLO series of basic models from YOLOv1 to YOLOv8,the ability of YOLO multi-scale fusion and the optimization of the network structure have been continuously enhanced to improve the model performance.Meanwhile,the other branch models of YOLO,based on the basic models of the YOLO series,have their functions in terms of loss function,backbone network,and multi-task of the basic model greatly improved.This paper mainly discusses the development process of the YOLO model,and studies and discuss-es the accuracy of the YOLO model in detecting small targets in the image and the accuracy of detecting defects in the thangka image to study whether the YOLO model can detect Tibetan cultural relics.For example,whether the YO-LO model can correctly identify and classify Tibetan silverware and copperware,because these two kinds of objects have more styles and less different patterns,requiring a high performance of the model.In this paper,the focus and strategy of the model improvement are discussed and studied,and the YOLO model can find improvement points in the direction of unsupervised or weak supervision in the learning mode.

YOLONetwork structureLoss functionXizangCultural artifactsSmall targets

文子嘉、张深、马璿

展开 >

西藏民族大学,咸阳 712082

YOLO 网络结构 损失函数 西藏 文物 小目标

西藏自治区自然科学基金项目陕西省教育厅专项科研计划项目西藏自治区自然科学基金项目

XZ202001ZR0060G21JK0949XZ202001ZR0022G

2024

西藏科技
西藏科技信息研究所

西藏科技

影响因子:0.202
ISSN:1004-3403
年,卷(期):2024.46(5)