首页|基于QRBL优化的TSO-XGBoost的交通事故严重程度预测及分析研究

基于QRBL优化的TSO-XGBoost的交通事故严重程度预测及分析研究

扫码查看
交通事故的严重程度预测是交通安全领域研究热点之一,为明晰事故严重程度的关键影响因素,进一步提高交通事故严重程度的预测准确性,文章提出了一种基于准反射学习策略(QRBL)的金枪鱼群优化算法(TSO)和极限梯度提升树(XGBoost)相结合的交通事故严重程度预测模型.首先,文章通过收集和整合中国东南地区某市、中部某市及东部沿海某市的交通事故数据,构建了一个包含36146起交通事故案例的详细数据集.其次,利用XGBoost算法识别影响事故严重程度的关键特征,并依据特征影响程度筛选出前20个事故特征作为事故严重程度预测模型的输入.最后,基于准反射学习策略(QRBL)优化TSO算法的寻优效能,从而确定XGBoost预测模型的超参数最优取值,实现对交通事故严重程度的预测分类,以提高预测的准确性和全面性.实验结果表明,该模型在精确率、查准率、召回率和F1分数等评价指标上均优于其他机器学习模型,具有显著的预测优势.此外,通过SHAP模型对关键影响因素进行了深入分析,为减少事故发生和降低事故严重程度提供了理论依据.
Research on Traffic Accident Severity Prediction and Analysis Based on TSO-XGBoost Optimized by QRBL
Traffic accident severity prediction is one of the research hotspots in the field of traffic safety.To clarify the crucial influencing factors of accident severity and further improve its prediction accuracy this study proposes a traffic accident severity prediction model based on Quasi-Reflex-based Learning(QRBL)combining Tuna Swarm Optimization Algorithm(TSO)and Extreme Gradient Boosting Tree(XGBoost).Firstly,the paper constructs a de-tailed dataset of 36,146 traffic accident cases by collecting and integrating traffic accident data from a city in south-east China,a city in central China,and a city on the eastern coast.Followingly,the XGBoost algorithm was used to identify the key features affecting the accident severity,and the top 20 accident features were selected as input of the accident severity prediction model according to the degree of influence of the features.Finally,the optimization per-formance of the TSO algorithm was optimized based on the QRBL strategy,so as to determine the optimal value of the hyperparameters of the XGBoost prediction model,and realize the prediction classification of traffic accident se-verity,so as to improve the accuracy and comprehensiveness of the prediction.Experimental results show that the pro-posed model is superior to other machine learning models in terms of precision,accuracy,recall and Fl score,and has significant prediction advantages.Besides,the key influencing factors are analyzed in depth through the SHAP mod-el,which provides a theoretical basis for reducing the occurrence and severity of accidents.

Traffic EngineeringAccident Severity PredictionFeature ExtractionXGBoostTSOQuasi-Reflection Based Learning

王嘉宁、王莹、牛学军、张雪杉

展开 >

中国人民公安大学交通管理学院,北京 100038

北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044

内蒙古呼伦贝尔市公安局鄂温克旗交管大队,呼伦贝尔 021100

交通工程 事故严重程度预测 特征提取 XGBoost TSO 准反射学习策略

2024

西藏科技
西藏科技信息研究所

西藏科技

影响因子:0.202
ISSN:1004-3403
年,卷(期):2024.46(12)