首页|电力行业CO2排放量预测及减排路径——以徐州市为例

电力行业CO2排放量预测及减排路径——以徐州市为例

扫码查看
基于1996-2022年《徐州统计年鉴》数据,分析徐州市电力行业CO2排放特征,参考宾婵佳等的方法测算徐州市电力行业CO2排放量,运用BP神经网络模型对2022-2030年徐州市电力行业CO2排放量进行预测.结果表明:1995-2021年徐州市电力行业CO2排放量为1 002.684~4 462.032万t;单位煤耗CO2排放系数从1995年的1.027 t/MWh上升到1998年的1.043 t/MWh,再下降到2021年的0.820 t/MWh.不同情景下,徐州市电力行业CO2排放量的预测值与实际值的独立样本t检验结果表明,运用BP神经网络模型预测电力行业CO2排放量是可行的.预测结果显示,到2030年,徐州市电力行业CO2排放量在基准情景下为5 382.358万t,低碳情景下为4 481.523万t,强化低碳情景下为4 077.167万t.提出了徐州市电力行业可从发电端、电网端和消费端实施碳减排措施.
Forecasting and reduction pathways for CO2 emissions in the power industry:a case study of Xuzhou city
Utilizing data from the Xuzhou Statistical Yearbook from 1996 to 2022,this study analyzes CO2 emission characteristics of the power industry in Xuzhou city.The CO2 emissions have been computed using the method ac-cording to Bin chanjia et al.,and the BP neural network model served to predict and assess the power industry's CO2 emissions.The findings indicate that CO2 emissions in Xuzhou's power sector ranged from 10.026 84 to 44.620 32 million tons between 1995 and 2021.The CO2 emission coefficient per unit of coal consumption surged from 1.027 t/MWh in 1995 to 1.043 t/MWh in 1998,subsequently declining to 0.820 t/MWh by 2021.Independ-ent sample t test comparing predicted and actual CO2 emission figures under different scenarios validate the BP neu-ral network model's predictive capability for the power industry's emissions.Projections indicate that by 2030,CO2 emissions will reach 53.823 58 million tons under a baseline scenario,44.815 23 million tons under a low-carbon scenario,and 40.771 67 million tons under an enhanced low-carbon scenario for Xuzhou's power sector.The study proposes that Xuzhou's power industry can undertake carbon emission reduction measures at the generation,grid,and consumption sectors.

Xuzhou citypower industryCO2 emissionsBP neural network model

吴蒙、王晓青、杨旅涵、张谷春、肖哓虎、徐辉、秦云虎

展开 >

江苏地质矿产设计研究院,江苏徐州 221006

中国矿业大学环境与测绘学院,江苏徐州 221116

成都理工大学地球科学学院,四川成都 610059

华东冶金地质勘查研究院,安徽合肥 230088

展开 >

徐州市 电力行业 CO2排放 BP神经网络模型

徐州市科技局社会发展重点项目江苏省碳达峰碳中和科技创新专项(2023)

KC21147BE2023855

2024

江苏师范大学学报(自然科学版)
江苏师范大学

江苏师范大学学报(自然科学版)

影响因子:0.323
ISSN:1007-6573
年,卷(期):2024.42(1)
  • 36