首页|基于数据同化技术构建传染病现报模型——以新冠疫情为例

基于数据同化技术构建传染病现报模型——以新冠疫情为例

扫码查看
考虑政府的管控隔离措施以及疫苗的保护作用,在传统动力学模型SEIR基础上重构背景模型SEIQRDV,同时,融合集合卡尔曼滤波(EnKF)技术,建立疫情现报同化模型SEIQRDV-EnKF,并利用我国湖北省、美国和印度的新冠疫情数据评估模型性能.结果表明,同化模型SEIQRDV-EnKF预测的感染、康复人数与实际情况基本一致,预测均方根误差和平均绝对百分比误差均较模型SEIQRDV低;克服了传统动力学模型SEIR的局限性,能利用较短的历史数据预测较为准确的疫情发展趋势,可在重大疫情发生时为地方政府的决策部署提供技术支撑.
Constructing an infectious disease nowcasting model based on data assimilation technology:taking COVID-19 as an example
Based on the traditional dynamical SEIR model,control and isolation measures as well as the protective role of vaccines were considered to reconstruct the background SE1QRDV model.Furthermore,the assimilation model for epidemic nowcasting,SEIQRDV-EnKF,was established by integrating the Ensemble Kalman Filter(En-KF)technique.The model's performance was evaluated using COVID-19 data from Hubei Province,China,the U-nited States,and India.The results showed that the predicted number of infections and recoveries by the assimila-tion model closely matched the actual data,with low prediction errors in terms of root mean square error(RMSE)and mean absolute percentage error(MAPE).Moreover,it overcame the limitations of the dynamical model and ac-curately predicted the epidemic trend using relatively short historical data.This provides strong technical support for local government decision-making and deployment during major infectious disease outbreaks.

COVID-19SEIQRDVEnKFdata assimilationnowcasting

卜苏源、黄智

展开 >

江苏师范大学物理与电子工程学院,江苏徐州 221116

新冠疫情 SEIQRDV EnKF 数据同化 现报

徐州市科技计划

KC21159

2024

江苏师范大学学报(自然科学版)
江苏师范大学

江苏师范大学学报(自然科学版)

影响因子:0.323
ISSN:1007-6573
年,卷(期):2024.42(1)
  • 17