首页|基于YOLOv5-CC的驾驶员疲劳状态检测

基于YOLOv5-CC的驾驶员疲劳状态检测

扫码查看
利用车载智能系统对驾驶员行车过程中的疲劳状态进行识别并预警,可有效提升交通安全率.针对驾驶室光线不佳情况下小目标检测准确度低的问题,提出基于YOLOv5-CC的驾驶员疲劳状态检测算法.该算法改进YOLOv5中Backbone的C3模块结构,在模块中增添卷积层和协调注意力,并通过十字交叉注意力机制融合Back-bone和Neck,加强模型全局特征提取能力.实验表明,YOLOv5-CC算法的精确率为98.0%,召回率为98.3%,平均精确率为98.9%;与其他算法相比,平均精确率均值为98.9%,检验效果优于其他算法.
Driver fatigue detection based on YOLOv5-CC
The on-board intelligent system is utilized to identify and warn drivers of fatigue during driving,which can effectively improve traffic safety.Aiming at the problem of low accuracy for small target detection under poor cab lighting,driver fatigue detection algorithm based on YOLOv5-CC is proposed.This algorithm improves the C3 mod-ule structure of Backbone in YOLOv5 by adding convolutional layers and coordinate attention to the module,and combines Backbone and Neck through criss-cross attention mechanism to enhance the model's global feature extrac-tion ability.The experimental results show that the precision of YOLOv5-CC algorithm is 98.0%,the recall rate is 98.3%,the average precision is 98.9%.Compared with other algorithms,the mean average precision is 98.9%,the experimental results are superior.

YOLOv5-CCfatigue drivingdeep learning

李真、高莉

展开 >

江苏师范大学电气工程及自动化学院,江苏徐州 221116

YOLOv5-CC 疲劳驾驶 深度学习

江苏省高等学校大学生创新创业训练计划徐州市科技计划

202110320117YKC18006

2024

江苏师范大学学报(自然科学版)
江苏师范大学

江苏师范大学学报(自然科学版)

影响因子:0.323
ISSN:1007-6573
年,卷(期):2024.42(1)
  • 22