首页|基于深度学习的YOLO系列物体检测算法研究综述

基于深度学习的YOLO系列物体检测算法研究综述

扫码查看
随着深度学习的发展,YOLO物体检测算法成为计算机视觉领域的研究热点,因其优秀的检测速度和平均检测精度,在物体检测领域被广泛的应用.对YOLO算法的发展历程进行了详细的论述.首先,从网络结构入手,详细的总结并分析了YOLOv1-v8算法的原理,归纳了YOLO算法的损失函数以及每个版本的改进措施,对YOLO算法的应用场景进行了分类,主要分为农业、交通和工业三大类领域;其次,分析了YOLO物体检测算法常用的数据集;最后,针对YOLO算法的特点以及结合最新的相关文献,提出了YOLO物体检测算法未来的研究方向.
Research review of YOLO series object detection algorithms based on deep learning
With the development of deep learning,YOLO object detection algorithm has become a research hotspot in the field of computer vision.Due to its excellent detection speed and average detection accuracy,YOLO object detection algorithm has been widely used in the field of object detection.The development of YOLO algorithm is discussed in detail.Firstly,starting from the network structure,the principle of YOLOv1-v8 algorithm is sum-marized and analyzed in detail,the loss function of YOLO algorithm,and the improvement measures of each ver-sion are summarized,and the application scenarios of YOLO algorithm are classified,which are mainly divided into three categories:agriculture,transportation and industry.Secondly,the data sets commonly used in YOLO object detection algorithms are analyzed.Finally,based on the characteristics of YOLO algorithm and the latest related literature,the future research direction of YOLO object detection algorithm is proposed.

object detectionYOLOcomputer visiondeep learning

毛少华、王文东

展开 >

延安大学 数学与计算机科学学院,陕西 延安 716000

物体检测 YOLO 计算机视觉 深度学习

2024

延安大学学报(自然科学版)
延安大学

延安大学学报(自然科学版)

影响因子:0.238
ISSN:1004-602X
年,卷(期):2024.43(2)