首页|改进的k-modes聚类算法在协同过滤就业推荐算法中的应用

改进的k-modes聚类算法在协同过滤就业推荐算法中的应用

扫码查看
为了给高校毕业生提供精准的个性化就业推荐服务,将基于动态权重相互依存距离的改进k-modes聚类算法应用于协同过滤推荐算法中.定义不同样本点属性之间的距离等于属性值内部距离和属性间外部距离的加权和,选择初始簇质心时,动态调整样本点与簇质心的距离以及簇密度的组合权重,动态设置簇密度计算公式的半径,根据样本点的概率值选出初始簇质心;迭代计算和优化得到满足精度的学生簇和职位簇;构建学生-职位矩阵,计算应届生和往届生的相似度、往届生和入职岗位的相似度,选择二者的相似度超过阈值的应届生簇和职位簇组合为匹配对进行匹配,并将匹配信息降序排列形成匹配列表,依据匹配列表进行双向推荐和信息推送,为高校的就业推荐和指导提供信息导向和技术支持.
Application of improved k-modes clustering algorithm in collaborative filtering employment recommendation algorithm
In order to provide accurate personalized employment recommendation service for college graduates,the improved k-modes clustering algorithm based on dynamic weight interdependence distance is applied to collabora-tive filtering recommendation algorithm.It is defined that the distance between attributes of different sample points is equal to the weighted sum of the internal distance of the attribute values and the external distance between the at-tributes.When the initial cluster centroid is selected,the distance between the sample point and the cluster centroid and the combined weight of the cluster density are dynamically adjusted,and the radius of the cluster density calculation formula is dynamically set,and the initial cluster centroid is selected according to the prob-ability value of the sample points.The student cluster and position cluster meeting the accuracy are obtained by iterative calculation and optimization.The student-post matrix is constructed to calculate the similarity between fresh graduates and previous graduates,and the similarity between former graduates and entry posts.The combina-tion of fresh graduates and job clusters whose similarity exceeds the threshold is selected as matching pair for matching.The matching information is arranged in descending order to form a matching list,and bidirectional recommendation and information push are carried out according to the matching list.To provide information guid-ance and technical support for university employment recommendation and guidance.

bilateral matching algorithmcollaborative filtering algorithmcluster analysisk-modes algorithmsimilarity measurement

刘逗逗、王文发、许淳

展开 >

延安大学西安创新学院 商学院,陕西 西安 710199

延安大学 数学与计算机科学学院,陕西 延安 716000

双边匹配算法 协同过滤算法 聚类分析 k-modes算法 相似性度量

2024

延安大学学报(自然科学版)
延安大学

延安大学学报(自然科学版)

影响因子:0.238
ISSN:1004-602X
年,卷(期):2024.43(2)