首页|基于对抗训练的鲁棒主成分分析算法

基于对抗训练的鲁棒主成分分析算法

扫码查看
现阶段的鲁棒主成分分析在遇到攻击者通过向给定的数据矩阵添加具有有界范数的任意矩阵来进行训练时,就会出现计算成本高导致算法的泛化能力差的结果.受对抗性训练启发,提出了一种将对抗训练和鲁棒主成分分析结合起来的高效算法,该算法假设对手向数据矩阵X中添加了一个有界集上的对抗矩阵R,该对抗性矩阵R可以使得数据矩阵X与分解之间Frobenius范数最大化,随后结合拉格朗日乘数法和最大化最小化方法来找到对抗主成分分析的近似解,从而得到具有增强泛化能力的主成分分析的矩阵和系数矩阵.实验结果表明,对抗训练的鲁棒主成分分析算法在人工合成数据集和公开的标准测试数据集CBCL、Moffet、Madonna上都优于标准主成分分析算法.
Robust principal component analysis algorithm based on adversarial training
In current robust principal component analysis,when an attacker trains a given data matrix by adding an arbitrary matrix with a bounded norm,the robust principal component analysis has high computational cost and poor generalization ability.Inspired by adversarial training,an efficient algorithm combining adversarial training and robust principal component analysis is proposed.The algorithm assumes that the adversary adds an adversarial matrix R on a bounded set to the data matrix X,and the adversarial matrix R can maximize the Frobenius norm between the data matrix X and the decomposition.Then the Lagrange multiplier method and maximization and minimization method are combined to find the approximate solution of the anti-PCA,and the matrix and coefficient matrix of the PCA with enhanced generalization ability are obtained.The experimental results show that the adversarial training robust PCA algorithm is superior to the standard PCA algorithm on synthetic data sets and open standard test data sets CBCL,Moffet,Madonna.

robust principal component analysisconfrontation trainingdimensionality reduction

张书铭、何进荣、张雨蓉

展开 >

延安大学 数学与计算机科学学院,陕西 延安 716000

鲁棒主成分分析 对抗训练 降维

2024

延安大学学报(自然科学版)
延安大学

延安大学学报(自然科学版)

影响因子:0.238
ISSN:1004-602X
年,卷(期):2024.43(4)