首页|小波-LSTM模型在肺结核发病趋势预测中的应用

小波-LSTM模型在肺结核发病趋势预测中的应用

扫码查看
目的 探讨小波-LSTM模型对肺结核发病率的预测效果,为防控肺结核提供参考.方法 通过小波分解将2012-2018年中国肺结核发病率数据分解为高频序列和低频序列,对分解序列构建LSTM模型;利用2019年数据验证小波-LSTM、LSTM模型的预测性能.结果 在预测未来3个月时,LSTM模型效果最优,其MSE、MAE、RMSE分别为0.007、0.069、0.085;在预测未来12个月发病趋势时,小波-LSTM模型效果最优,其MSE、MAE、RMSE分别为0.046、0.156、0.215.结论 小波-LSTM模型对肺结核发病率的长期预测效果优于LSTM模型,小波-LSTM模型在肺结核发病趋势预测分析中具有一定的应用价值.
Application of wavelet-LSTM model in predicting the incidence trend of pulmonary tuberculosis
Objective To explore the prediction effect of wavelet-LSTM(long short-term memory)model on the incidence of pulmonary tuberculosis(PTB),and to provide reference for the prevention and control of PTB.Methods The data of tuberculosis incidence in China from 2012 to 2018 were decomposed into high-frequency series and low-frequency series through wavelet decomposition,and LSTM model was constructed for the decomposed series.The prediction performance of wavelet-LSTM and LSTM models was verified with the data in 2019.Results When predicting the incidence trend in the next 3 months,the LSTM model had better performance,with a MSE(mean square error),MAE(mean absolute error)and RMSE(root mean square error)of 0.007,0.069 and 0.085,respectively.When predicting the incidence trend in the next 12 months,the wavelet-LSTM model had better performance,with a MSE,MAE and RMSE of 0.046,0.156 and 0.215,respectively.Conclusions The long-term prediction performance of the wavelet-LSTM model was better than that of the LSTM model on the incidence of PTB.The wavelet-LSTM model has certain application value in predicting and analyzing the incidence trend of PTB.

pulmonary tuberculosis(PTB)wavelet-LSTMLSTM model

范瑾、李珊珊、冯语梦、赵执杨、贺生

展开 >

四川护理职业学院,成都 610100

中山大学,广州 510275

肺结核 小波-LSTM模型 LSTM模型

四川护理职业学院自然科学与技术类课题

2023ZRY03

2024

预防医学情报杂志
中华预防医学会,四川省疾病预防控制中心

预防医学情报杂志

CSTPCD
影响因子:0.681
ISSN:1006-4028
年,卷(期):2024.40(6)