首页|基于Sentinel-2和3D多源域自注意力模型的湿地分类

基于Sentinel-2和3D多源域自注意力模型的湿地分类

扫码查看
准确的湿地分类可掌握湿地时空分异特征,在湿地研究中占据重要地位.针对现有基于小样本学习的湿地分类方法仅局限于利用目标域或单源域数据的问题,本文提出一种3D多源域自注意力小样本学习模型3D-MDAFSL(3D Multi-source Domain self-Attention Few-Shot Learning).首先,结合卷积和注意力机制的优势,设计基于自注意力机制和深度残差卷积的3D特征提取器;然后,采用对抗域自适应策略实现多源域特征对齐,在每个域分别进行小样本学习;最后,利用训练好的模型提取特征,并将特征输入至K近邻(K-nearest Neighbor)分类器以获取分类结果.结果表明,3D特征提取器相比无特征提取框架的湿地总体分类精度提升约6.79%;当使用多源域数据集时,3D-MDAFSL模型对中山市Sentinel-2湿地数据集的总体分类精度能达到93.52%,相比于现有算法有明显提升.本文所提出的3D-MDAFSL模型在湿地地物高精度提取和分类中有较好的应用价值.
Wetland classification based on Sentinel-2 and 3D multisource domain self-attention model
Accurate wetland classification methods can quickly grasp the spatial-temporal variation characteristics of wetlands and play an important role in wetland research.Considering the limitation of the existing wetland classification method based on few-shot learning to the use of target or single-source domain dataset,this paper proposes a 3D multisource domain self-attention few-shot learning(3D-MDAFSL)model.First,combining the advantages of convolution and attention mechanism,a 3D feature extractor based on self-attention mechanism and deep residual convolution is designed.Then,the conditional adversarial domain adaptation strategy is used to achieve multisource domain distribution alignment,and few-shot learning is performed separately in each domain.Finally,the features extracted by the trained model are imputed to the K-nearest neighbor classifier to obtain classification results.Results show that compared with the framework without feature extraction,the 3D feature extractor improves the overall accuracy by approximately 6.79%.When using multisource domain datasets,the overall accuracy of the 3D-MDAFSL model for the Sentinel-2 wetland dataset in Zhongshan City can reach 93.52%,which is a significant improvement compared with the existing algorithms.The 3D-MDAFSL model proposed in this paper has good application value in the high-precision extraction and classification of wetland features.

remote sensingfew-shotwetland classificationmulti-source domain adaptionself-attention

楼桉君、贺智、肖曼、李心媛

展开 >

中山大学地理科学与规划学院,广州 510275

南方海洋科学与工程广东省实验室(珠海),珠海 519082

遥感 小样本 湿地分类 多源域 自注意力

国家重点研发计划国家自然科学基金面上项目南方海洋科学与工程广东省实验室(珠海)创新团队建设项目广东省自然科学基金面上项目广州市科技计划国防基础科研计划

2020YFA0714103422713253110210182019A1515011877202002030240WDZC20205500205

2024

遥感学报
中国地理学会环境遥感分会 中国科学院遥感应用研究所

遥感学报

CSTPCD北大核心
影响因子:2.921
ISSN:1007-4619
年,卷(期):2024.28(1)
  • 41