首页|利用空间随机森林方法提升GPM卫星遥感降水质量

利用空间随机森林方法提升GPM卫星遥感降水质量

扫码查看
卫星遥感降水产品是当前获取大范围、连续性降水观测的主要来源,但目前已有的卫星遥感降水产品空间分辨率粗糙,且存在一定的系统偏差.为此,本文充分考虑高分辨率环境变量(包括地形、NDVI、地表温度、经纬度)对降水影响以及邻近遥感降水(站点)空间相关性,构建了一种双阶段空间随机森林SRF(Spatial Random Forest)方法(SRF-SRF).以四川省 2015年-2019年 GPM(Global Precipitation Measurement Mission)月降水数据为例,借助SRF-SRF对其质量提升,并将计算结果与现有7种方法比较,包括地理加权回归(GWR)、反向传播神经网络(BPNN)、随机森林(RF)、站点降水Kriging插值(Kriging)、经SRF降尺度后的地理差异分析校正(SRF-GDA)、经双线性插值降尺度后的SRF校正(Bi-SRF)以及年降水经SRF降尺度后按月比例分解并利用SRF校正(SRFdis)等.实验分析表明:(1)在月尺度上,与原始GPM相比,SRF-SRF的平均绝对误差(MAE)降低了 19.51%,中误差(RMSE)降低了 16.35%,而且精度优于其他方法;在季尺度上,SRF-SRF在冬季误差最小,在夏季误差最大,但其计算精度均优于其他方法;在年尺度上,基于SRF的4种方法(包括SRF-SRF、SRF-GDA、Bi-SRF和 SRFdis)优于GWR、BPNN、RF,并且SRF-SRF计算精度优于单阶段的 Bi-SRF和 SRF-GDA.(2)SRF-SRF降水产品空间分布连续性较好,且局部降水细节得到明显提升.(3)借助RF对各自变量重要性分析得出,降水空间相关性对卫星遥感降水质量提升具有重要作用.(4)基于月尺度的SRF-SRF融合校正效果优于基于年尺度的SRFdis,表明NDVI可用于该区域月尺度降水质量提升.
Improving the quality of remotely sensed precipitation product from GPM satellites by using a spatial random forest
Satellite remote-sensing precipitation products are currently the main source for obtaining large-scale and continuous precipitation observations.However,currently available satellite remote-sensing precipitation products have coarse spatial resolution and suffer from certain systematic biases.Thus,this paper aims to downscale the precipitation data and remove its inherent systematic biases.This paper proposes a two-stage Spatial Random Forest(SRF)method(SRF-SRF)by fully considering the influence of high-resolution environmental variables(including topography,NDVI,surface temperature,latitude,and longitude)on the precipitation and the spatial correlation of neighboring remotely sensed precipitation(stations).Taking the Global Precipitation Measurement Mission(GPM)monthly precipitation data of Sichuan Province from 2015-2019 as an example,its quality is enhanced with the help of SRF-SRF.The calculation results are compared with those of seven existing methods,including Geo-Weighted Regression(GWR),Back-Propagation Neural Network(BPNN),Random Forest(RF),Kriging interpolation of station precipitation(Kriging),Geographic Difference Analysis correction after downscaling by SRF(SRF-GDA),SRF correction after downscaling by bilinear interpolation(Bi-SRF),and annual precipitation downscaled by SRF.Subsequently,the results are scaled by month and corrected using SRF(SRFDis).Experimental analysis shows the following:(1)At the monthly scale,compared with the original GPM,the mean absolute error(MAE)of SRF-SRF is reduced by 19.51%,and the medium error(RMSE)is reduced by 16.35%.The accuracy is better than those of other methods.At the seasonal scale,SRF-SRF has the smallest error in winter and the largest error in summer,but its calculation accuracy is better than those of other methods.At the annual scale,the four SRF-based methods(including SRF-SRF,SRF-GDA,Bi-SRF,and SRFdis)outperform GWR,BPNN,and RF.The accuracy of SRF-SRF is higher than that of Bi-SRF and SRF-GDA.(2)The spatial-distribution continuity of SRF-SRF precipitation products is better,and the local precipitation details are significantly improved.(3)The spatial correlation of precipitation plays an important role in the improvement in GPM precipitation quality.(4)SRF-SRF based on the monthly scale is better than SRFdis based on the annual scale.This finding indicates that NDVI can be used for precipitation-quality enhancement at the monthly scale in Sichuan province.This paper proposes a two-stage satellite precipitation product-quality enhancement method that considers spatial correlation.The method takes into account the spatial autocorrelation between precipitation and combines downscaling and calibration while integrating environmental factors.Accordingly,the spatial resolution and accuracy of precipitation products improve.Experimental results show that the new method outperforms the other seven classical methods and is more applicable to the quality improvement of precipitation products in complex terrain.

remote sensingprecipitationdownscalingpoint and surface fusionrandom forestGPMmachine learning

胡保健、李伟、陈传法、胡占占

展开 >

山东科技大学测绘与空间信息学院,青岛 266590

湖州中核勘测规划设计有限公司,湖州 313000

遥感 降水 降尺度 点面融合 随机森林 GPM 机器学习

山东省自然科学基金山东省自然科学基金山东省高等学校青创科技支持计划

ZR2020YQ26ZR2019MD0072019KJH007

2024

遥感学报
中国地理学会环境遥感分会 中国科学院遥感应用研究所

遥感学报

CSTPCD北大核心
影响因子:2.921
ISSN:1007-4619
年,卷(期):2024.28(2)
  • 1
  • 40