首页|基于面向对象孪生神经网络的高分辨率遥感影像建筑物变化检测

基于面向对象孪生神经网络的高分辨率遥感影像建筑物变化检测

扫码查看
建筑物变化检测在城市环境监测、土地规划管理和违章违规建筑识别等应用中具有重要作用.针对传统孪生神经网络在影像变化检测中存在的检测边界与实际边界吻合度低的问题,本文结合面向对象图像分析技术,提出一种基于面向对象孪生神经网络(Obj-SiamNet)的高分辨率遥感影像变化检测方法,利用模糊集理论自动融合多尺度变化检测结果,并通过生成对抗网络实现训练样本迁移.该方法应用在高分二号和高分七号高分辨率卫星影像中,并与基于时空自注意力的变化检测模型(STANet)、视觉变化检测网络(ChangeNet)和孪生UNet神经网络模型(Siam-NestedUNet)进行比较.结果表明:(1)融合面向对象多尺度分割的检测结果较单一尺度分割的检测结果,召回率最高提升32%,Fl指数最高提升25%,全局总体误差(GTC)最高降低7%;(2)在样本数量有限的情况下,通过生成对抗网络进行样本迁移,与未使用样本迁移前的检测结果相比,召回率最高提升16%,F1指数最高提升14%,GTC降低了 9%;(3)Obj-SiamNet方法较其他变化检测方法,整体检测精度得到提升,Fl指数最高提升23%,GTC最高降低9%.该方法有效提高了建筑物变化检测在几何和属性方面的精度,并能有效利用开放地理数据集,降低了模型训练样本制作成本,提升了检测效率和适用性.
Use of object-based Siamese neural network to build change detection from very high resolution remote-sensing images
Building change detection is essential to many applications,such as monitoring of urban areas,land use management,and illegal building detection.It has been seen as an effective means to detect building changes from remote-sensing images.This paper proposes an object-based Siamese neural network,labeled as Obj-SiamNet,to detect building changes from high-resolution remote-sensing images.We combine the advantages of object-based image analysis methods and Siamese neural networks to improve the geometric accuracies of detected boundaries.Moreover,we implement the Obj-SiamNet at multiple segmentation levels and automatically construct a set of fuzzy measures to fuse the obtained results at multi-levels.Furthermore,we use generative adversarial methods to generate target-like training samples from publicly available datasets and construct a relatively sufficient training dataset for the Obj-SiamNet model.Finally,we apply the proposed method into three high-resolution remote-sensing datasets,i.e.,a GF-2 image-pair in Fuzhou City,and a GF2 image pair in Pucheng County,and a GF-2-GF-7 image pair in Quanzhou City.We also compare the proposed method with three other existing ones,namely,STANet,ChangeNet,and Siam-NestedUNet.Experimental results show that the proposed method performs better than the other three in terms of detection accuracy.(1)Compared with the detection results from single-scale segmentation,the detection results from multi-scale increases the recall rate by up to 32%,the F1-Score increases by up to 25%,and the Global Total Classification error(GTC)decreases by up to 7%.(2)When the number of available samples is limited,the adopted Generative Adversarial Network(GAN)is able to generate effective target-like samples for diverting samples.Compared with the detection without using GAN-generated samples,the proposed detection increases the recall rate by up to 16%,increases the Fl-Score by up to 14%,and decreases GTC by 9%.(3)Compared with other change-detection methods,the proposed method improves the detection accuracies significantly,i.e.,the Fl-Score increases by up to 23%,and GTC decreases by up to 9%.Moreover,the boundaries of the detected changes by the proposed method have a high consistency with that of ground truth.We conclude that the proposed Obj-SiamNet method has a high potential for building change detection from high-resolution remote-sensing images.

change detection of remote sensingSiamese Neural Networkobject-based multi-scale analysisfuzzy sets fusiongenerative adversarial networkvery high resolution remote sensing images

刘宣广、李蒙蒙、汪小钦、张振超

展开 >

福州大学数字中国研究院(福建),福州 350108

福州大学空间数据挖掘与信息共享教育部重点实验室,福州 350108

信息工程大学地理空间信息学院,郑州 450001

遥感变化检测 孪生神经网络 面向对象多尺度分析 模糊集融合 生成对抗网络 高分辨率遥感影像

国家自然科学基金福建省自然科学基金福建省科技计划

420012832021J016302022C0024

2024

遥感学报
中国地理学会环境遥感分会 中国科学院遥感应用研究所

遥感学报

CSTPCD北大核心
影响因子:2.921
ISSN:1007-4619
年,卷(期):2024.28(2)
  • 49