首页|新增建设用地卫星遥感智能监测技术研究

新增建设用地卫星遥感智能监测技术研究

扫码查看
为适应自然资源监测、土地执法督察等对高精度、高频率新增建设用地信息提取的应用需求,本研究构建了新增建设用地卫星遥感智能监测的技术框架。该框架包括"时空谱类"监测超立方体、监测底图生成、样本标注迭代、组件式AI变化检测模型构建、图斑知识筛选及精化后处理等步骤。为满足大区域、复杂场景的精准应用需求,本研究充分结合注意力机制、域适应、视觉Transformer等人工智能优势算法及网络结构,研发了组件式AI变化检测模型,以提升算法准确性和可靠性。针对自动提取图斑出现的误提取、图斑破碎、边缘不准等问题,充分利用地学知识进行业务规则约束,并研究图斑精化后处理方法。本研究通过开展新增建设用地大尺度遥感监测分区分时实验,验证了"时空谱类"监测超立方体思路的可行性;开展了 AI变化检测模型组件消融实验,对比分析各算法优劣,结果表明,视觉Transformer模块在新增建设用地提取的完整性、边缘准确性、查全率方面呈现明显优势;另外,基于卫星影像督查执法部分业务数据,开展了云覆盖筛选实验,筛选出误提取图斑所占比例约0。84%,同时,采用图斑精细化后处理方法,进一步提升了监测成果的精确性、实用性。本文提出的新增建设用地卫星遥感智能监测技术方法,目前已在土地执法督查等自然资源监测监管业务中得到应用。
Research on satellite remote sensing-based intelligent monitoring technologies for new construction land
The accurate and frequent extraction of information regarding new construction land is essential in natural resource monitoring and land law enforcement supervision.To fulfill these practical demands,this study constructed a technical framework for the intelligent monitoring of new construction land via satellite remote sensing.The framework includes a"spatial-temporal-spectral-classified"monitoring hypercube,a base map generation for monitoring,a sample annotation iteration,component-based artificial intelligence(AI)change detection model establishment,parcel information filtering,and post-processing.To meet the demand for accurate applications in large areas and complex scenes,this study fully combined different AI algorithms and network structures,such as attention mechanism,domain adaptation,and visual transformers,to develop a component-based AI change detection model for improving the accuracy and reliability of the algorithm.Meanwhile,to address issues,such as misidentification during the automatic extraction of new construction land parcels,parcel fragmentation,and edge inaccuracy,geomorphological principles were comprehensively utilized to set constraints and investigate post-processing parcel refinement methods.Experiments by region and time were conducted on large-scale remote sensing monitoring of new construction land to verify the feasibility of the proposed concept of the"spatial-temporal-spectral-classified"monitoring hypercube.Moreover,through ablation analysis of the component-based AI change detection model,the advantages and disadvantages of the algorithms were compared and analyzed.In particular,the visual transformer module exhibits evident advantages in terms of the feature completeness,edge accuracy,and recall rate of new construction land extraction.On the basis of certain operational data of satellite image-based law enforcement and supervision,cloud cover filtering was conducted.Wrongly extracted parcels accounted for about 0.84%.In addition,after the post-processing parcel refinement method proposed in this study was adopted,the accuracy and practicability of the monitoring results were further enhanced.The satellite remote sensing-based technologies and methods for the intelligent monitoring of new construction land proposed in this study have been applied to natural resource monitoring,such as land law enforcement and supervision.

satellite remote sensingartificial intelligencenewly constructed landchange detection

刘力荣、唐新明、甘宇航、尤淑撑、刘克、罗征宇

展开 >

自然资源部国土卫星遥感应用中心,北京 100048

卫星遥感 人工智能 新增建设用地 变化检测

2024

遥感学报
中国地理学会环境遥感分会 中国科学院遥感应用研究所

遥感学报

CSTPCD北大核心
影响因子:2.921
ISSN:1007-4619
年,卷(期):2024.28(11)