首页|基于多尺度时空全局注意力的遥感影像时间序列农作物分类

基于多尺度时空全局注意力的遥感影像时间序列农作物分类

扫码查看
利用遥感影像时间序列进行自动化智能解译农作物精细类型,在农业资源调查、监管和规划等领域有着重要的作用.目前已有的深度学习方法通过卷积或循环网络获取遥感时序中局部的时序、空间信息,缺乏对遥感影像时间序列中时空信息的充分利用,导致分类精度不高.近年来,视觉自注意力机制在计算机视觉领域取得重要突破,自注意力机制是一种能够通过获取全局特征来充分挖掘数据信息的方法.基于此,本文提出了一种多尺度时空全局注意力模型 MSSTGAM(Multi-Scale Spatial-Temporal Global-Attention Model),该模型采用空间自注意力机制和时序自注意力机制相结合以构建多尺度的时空全局注意力,从而充分挖掘遥感影像时间序列中的信息用于农作物精细分类.本研究将该模型在公开数据集PASTIS和自制Mississippi数据集上进行了检验和评估,实验结果表明:本文提出的MSSTGAM能够有效地进行遥感影像时间序列的农作物分类;与其他方法相比定量分类精度最优,分别取得83.4%和86.7%的总体分类精度,地块内的可视化结果在空间一致性上更好.本研究提出的多尺度时空全局注意力模型MSSTGAM对遥感影像时间序列的农作物精细分类具有重要的理论和应用价值.
Crop type classification of remote sensing image time series based on multi-scale spatial-temporal global attention model
With the development of deep learning,the use of deep learning methods to obtain accurate crop classification results from remote sensing image time series has become a research hotspot.The automatic intelligent interpretation of fine types of crops by utilizing remote sensing image time series plays an important role in the fields of agricultural resource investigation,supervision,and planning.The classical time series classification of remote sensing images is based on pixel-based classification,and only the temporal information of the time series is utilized.The spatial information of the shape,size,and distribution of ground objects in the time series of remote sensing images also plays an important role in the classification crops,so it is beneficial to extract the hybrid spatial-temporal features of the time series by fully mining the spatial—temporal information of the time series.However,existing deep learning methods extract local spatial or local temporal information by using convolutional or recurrent neural networks,resulting in the inadequate utilization of spatial-temporal information,and consequently,low classification accuracy.In recent years,whether in the field of Natural Language Processing or Computer Vision,the self-attention mechanism has proven to be an effective method to fully utilize data information by attaining global attention.Thus,in this paper,we propose a multiscale spatial-temporal global attention model(MSSTGAM),which combines a spatial self-attention mechanism and a temporal self-attention mechanism to construct a multiscale spatial-temporal global attention mechanism and fully obtain the information of the remote sensing image time series for the fine classification of crop types.Specifically,MSSTGAM adopts SWIN Transformer to process the spatial information of remote sensing image time series to obtain output at different spatial scales,and uses lightweight temporal attention encoder(LTAE)to obtain spatial-temporal global features at the deepest spatial scale,and shares the temporal attention weights to other spatial scale through the temporal sharing block to obtain multi-scale spatial-temporal global attention features for fine classification of crop type.The proposed method is evaluated on the publicly available dataset PASTIS and customized Mississippi dataset.The overall classification accuracy of 83.4%and 86.7%was obtained on the two datasets,respectively.Moreover the proposed method achieves the best Fl scores in most crop types,especially for wheat crops,which have an improvement of 2.6%and 3.3%over existing methods on the two datasets,respectively.The quantitative results demonstrate the effectiveness and application value of MSSTGAM for fine classification of crop type.The visualization of the classification results shows that the classification results of the proposed method have better spatial consistency,and the further visual analysis of temporal attention weights points out the theoretical basis for the proposed method to obtain fine classification of crops.The findings of this study show that multiscale spatial-temporal global attention demonstrates significant theoretical and practical significance.MSSTGAM can capture the global spatial-temporal evolution of land cover,which is conducive to improving the spatial consistency and classification accuracy of fine crop types.It is more effective for the fine classification of crop types from remote sensing image time series.

remote sensing image time seriescrop type classificationself-attention mechanismglobal attentionmulti-scale spatial-temporal feature

张伟雄、唐娉、孟瑜、赵理君、赵智韬、张正

展开 >

中国科学院空天信息创新研究院,北京 100094

中国科学院大学电子电气与通信工程学院,北京 100049

遥感影像时间序列 农作物分类 自注意力机制 全局注意力 时空多尺度

2024

遥感学报
中国地理学会环境遥感分会 中国科学院遥感应用研究所

遥感学报

CSTPCD北大核心
影响因子:2.921
ISSN:1007-4619
年,卷(期):2024.28(11)