首页|SiC/SiBCN-Si3N4复合材料力学性能研究

SiC/SiBCN-Si3N4复合材料力学性能研究

扫码查看
为了深入了解SiC/SiBCN-Si3N4材料微观形貌与高温力学行为,建立科学可靠的定量表征方法,本文使用多种表征手段对SiC/SiBCN-Si3N4材料进行定量观测,首先进行材料孔隙率及密度的测试,随后进行材料高温原位力学性能测试并对材料损伤机理进行了分析,最后基于试验数据构建了一种可解释的深度学习模型,实现了材料高温非线性本构关系预测.样件力学性能分析结果表明:平均应力预测误差为0.27%~0.59%、平均应变预测误差为1.96%~3.41%;同时通过量化分析明确了影响力学性能的因素依次为温度、偏轴角度、孔隙率及密度.本文实现了不同环境温度、偏轴角度与外载荷作用下SiC/SiBCN-Si3N4宏观力学性能的预测,可为陶瓷基复合材料高温本构模型的建立提供新思路.
Mechanical Properties of SiC/SiBCN-Si3N4 Composite
In order to further understand the microstructure and high temperature mechanical behavior of SiC/SiBCN-Si3N4 composite,and establish a scientific and reliable quantitative characterization methodology,this paper uses a variety of characterization methods to quantitatively observe SiC/SiBCN-Si3N4 material.Firstly,the porosity and density of the material are tested.Then the in-situ mechanical properties of the material at high temperatures were tested and the damage mechanism of the material was analyzed.Finally,an interpretable deep learning model was constructed based on the test data to realize the prediction of the nonlinear constitutive relationship of the material at high temperature.The results show that the average stress prediction error ranges from 0.27%to 0.59%,and the average strain prediction error ranges from 1.96%to 3.41%.Through quantitative analysis,it is also clear that the factors successively affecting the mechanical properties are temperature,off-axis Angle,porosity and density.In this paper,the macroscopic mechanical properties of SiC/SiBCN-Si3N4 under different ambient temperature,off-axis angles and external loads are predicted,which provides a new idea for the establishment of high temperature constitutive model of ceramic matrix composites.

SiC/SiBCN-Si3N4 compositeObservation of structural featuresMechanical propertiesDeep learning

王泽璇、胡兆财、刘彬、谭指、解维华

展开 >

哈尔滨工业大学航天学院,哈尔滨 150001

北京宇航系统工程研究所,北京 100076

SiC/SiBCN-Si3N4复合材料 结构特征观测 力学性能 深度学习

国家自然科学基金项目国家自然科学基金项目中国博后面上项目黑龙江省博后面上项目

12090034121721082022M710035LBH-Z22112

2024

宇航材料工艺
航天材料及工艺研究所

宇航材料工艺

CSTPCD北大核心
影响因子:0.378
ISSN:1007-2330
年,卷(期):2024.54(2)
  • 23