首页|空间相依数据的分块经验似然推断

空间相依数据的分块经验似然推断

扫码查看
对数据进行分块处理的分块经验似然方法被证实是一种对相依数据行之有效的手段.本文通过对得分函数进行分块得到新分块经验似然方法,并应用到高维相依数据情形.我们研究高维下含空间自相关误差的空间自回归模型的新分块经验似然方法,证明该经验似然统计量的极限分布为卡方分布,并由此构造高维参数置信区间.模拟对比了普通经验似然方法与新分块经验似然方法在各自置信区间的表现.
Blockwise Empirical Likelihood Method for Spatial Dependent Data
Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the scoring functions under high dimensional cases.We study the construction of confidence regions for the parameters in spatial autoregressive models with spatial autoregressive disturbances(SARAR models)with high dimension of parameters by using the NBEL method.It is shown that the NBEL ratio statistics are asymptotically x2-type distributed,which are used to obtain the NBEL based confidence regions for the parameters in SARAR models.A simulation study is conducted to compare the performances of the NBEL and the usual EL methods.

SARAR modelEmpirical likelihoodConfidence regionHigh-dimensional statistical inference

唐洁、邹云龙、秦永松、黎玉芳

展开 >

北京师范大学统计学院,广东 珠海 519000

广西师范大学数学与统计学院,广西 桂林 541004

SARAR模型 经验似然 置信区域 高维统计推断

2025

应用数学
华中科技大学

应用数学

北大核心
影响因子:0.234
ISSN:1001-9847
年,卷(期):2025.38(1)