首页|Boussinesq方程的两种高效二阶数值格式

Boussinesq方程的两种高效二阶数值格式

扫码查看
本文研究Boussinesq方程的高效数值求解问题,首先利用标量辅助变量(SAV)方法,将原Boussinesq方程改写为等价的Boussinesq方程,然后利用二阶后向微分公式(BDF2),Crank-Nicolson(CN)方法和压力校正法对其进行离散,得到两个二阶全解耦的时间离散格式.经过严格的理论分析,得到它们的无条件稳定性,唯一可解性和解耦的详细实现过程.最后,进行了各种二维数值模拟,验证了所提方案的精度和能量稳定性.
Two Second-Order Efficient Numerical Schemes for the Boussinesq Equations
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward differentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.

Scalar auxiliary variable approachPressure-correction methodFully decoupledUnconditional stabilityBoussinesq equations

刘芳、王旦霞、张建文

展开 >

太原理工大学数学学院,山西晋中 030600

智能优化计算与区块链技术山西省重点实验室,山西晋中 030600

标量辅助变量法 压力校正法 全解耦 无条件稳定性 Boussinesq方程

2025

应用数学
华中科技大学

应用数学

北大核心
影响因子:0.234
ISSN:1001-9847
年,卷(期):2025.38(1)