首页|基于强稳定收敛的偏正态联合位置与尺度模型的参数估计算法

基于强稳定收敛的偏正态联合位置与尺度模型的参数估计算法

扫码查看
传统的迭代算法(例如牛顿算法,EM算法等)在实际应用中,往往存在初始值较为敏感的问题.为解决这一问题,一种强稳定的收敛算法——Upper-crossing/Solution算法(以下称US算法)被提出,这种算法虽然在求解一元非线性函数时具有强稳定性,但是不能推广到多元的情形.那么针对多元情形,本文将结合偏正态分布的随机表示,对偏正态联合位置与尺度模型的似然函数进行分层,并且利用MM算法得到一元的情形,再使用US算法构造强稳定的收敛算法.最后通过随机模拟分析和实例分析研究表明了US算法较牛顿迭代法大大降低了算法对初值的敏感度以及显著地提高了收敛的稳定性.
Parameter Estimation Algorithm for Skew-normal Joint Location and Scale Models Based on Strong Stable Convergence
In practical applications,traditional iterative algorithms such as the Newton method and EM algorithm often exhibit sensitivity to initial values.To address this issue,a robust convergence algorithm,referred to as the Upper-crossing/Solution algorithm(hereafter called the US algorithm),has been proposed.While this algorithm demonstrates strong stability in solving univariate nonlinear func-tions,it cannot be generalized to multivariate scenarios.Therefore,for multivariate situations,this paper combines the random representation of skew-normal distribution to stratify the likelihood function of the skew-normal joint location and scale models.Additionally,the MM algorithm is utilized to handle the univariate case,followed by the application of the US algorithm to construct a robust convergence algo-rithm.Finally,through Monte Carlo simulations studies and a real example analysis show that the US algorithm significantly reduces sensitivity to initial values compared to the Newton-Raphson method and markedly improves convergence stability.

Skew-normal joint location and scale modelsNewton iteration methodUS algorithmStrongly stable convergence

薛潇、吴刘仓

展开 >

昆明理工大学理学院,云南 昆明 650500

昆明理工大学应用统计学研究中心,云南 昆明 650500

偏正态联合位置与尺度模型 牛顿迭代法 US算法 强稳定收敛

2025

应用数学
华中科技大学

应用数学

北大核心
影响因子:0.234
ISSN:1001-9847
年,卷(期):2025.38(1)