首页|求解一类线性多乘积规划问题的自适应分支定界算法

求解一类线性多乘积规划问题的自适应分支定界算法

扫码查看
本文针对一类线性多乘积规划问题(LMP)提出一种具有自适应分支规则的分支定界算法.首先将问题(LMP)转化为等价问题,然后利用分段线性近似逼近其非凸约束的凹部分,通过所提出的自适应分支规则分割盒子并迭代细化分段线性近似,将问题(LMP)的求解过程转化为求解一系列二阶锥松弛问题(SOCR).此外,证明算法的收敛性和复杂度.最后,数值结果表明了该算法的有效性和可行性.
A Flexible Branch and Bound Algorithm for Solving a Class of Linear Multiplicative Programming Problems
This paper presents a branch and bound algorithm with a flexible branching rules for a class of linear multiplicative programming(LMP)problems.Firstly,the(LMP)problem is transformed into an equivalent problem,and then the concave part of the nonconvex constraint is approximated by piecewise linear approximation.By using the proposed adaptive branching rule for dividing rectangles and iteratively refining the piecewise linear approximations,the solving process of the(LMP)problem is transformed into solving a series of second order cone relaxation problems(SOCR).In addition,the convergence and complexity of the algorithm are proved.Finally,numerical results show the effectiveness and feasibility of the proposed algorithm.

Linear multiplicative programmingGlobal optimal solutionFlexible branch and boundSecond order cone relaxation

梁雨欣、申培萍、尹建菲

展开 >

华北水利水电大学数学与统计学院,河南郑州 450046

线性多乘积规划 全局最优解 自适应分支定界 二阶锥松弛

2025

应用数学
华中科技大学

应用数学

北大核心
影响因子:0.234
ISSN:1001-9847
年,卷(期):2025.38(1)