首页|具有潜伏期的HPV与沙眼衣原体合并感染的SEIRS模型研究

具有潜伏期的HPV与沙眼衣原体合并感染的SEIRS模型研究

扫码查看
本文建立一类HPV-沙眼衣原体合并感染的SEIRS模型,考虑两种病原体传播的潜伏期与非永久免疫.首先证明了模型解的非负性和有界性,接着利用下代矩阵得到模型的基本再生数.当仅感染HPV模型基本再生数RHP<1时,系统的无病平衡点局部及全局渐近稳定,当RHP>1时,唯一的地方病平衡点局部及全局渐近稳定.当合并感染模型基本再生数RHL<1时,无病平衡点全局渐近稳定,当RHL>1及入侵再生数R1HP>1,R1CL>1时,系统一致持续且至少存在一个地方病平衡点.最后用数值模拟演示了理论结果的有效性.
Analysis of a HPV and Chlamydia Trachomatis Coinfection SEIRS Model with Incubation Period
In this paper,we analyze the transmission dynamics of a HPV-Chlamydia trachomatis mixed infection model,which includes the incubation periods of two pathogens,and the non-permanent immunities.We first prove the non-negativity and boundedness of the solution.Then,the basic repro-duction numbers are obtained by using the next generation matrix.When the basic reproduction number RHP<1 of HPV infection sub-model,the disease-free equilibrium is locally and globally asymptotically stable.When the RHP>1,the system has a unique endemic equilibrium which is locally and globally asymptotically stable.When the basic reproduction number RHL<1 of coinfection model,the disease-free equilibrium is globally asymptotically stable,while RHL>1 and the invasion reproduction numbers R1HP>1,R1CL>1,the system is uniformly persistent and there is at least one endemic equilibrium.Finally,the theoretical results are illustrated by numerical simulation.

SEIRS epidemic modelCo-infection modelBasic reproduction numberGlobal sta-bilityUniform persistence

王文聪、张龙

展开 >

新疆大学数学与系统科学学院,新疆乌鲁木齐 830017

新疆维吾尔自治区应用数学重点实验室,新疆乌鲁木齐 830017

SEIRS传染病模型 合并感染 基本再生数 全局稳定性 一致持续

2025

应用数学
华中科技大学

应用数学

北大核心
影响因子:0.234
ISSN:1001-9847
年,卷(期):2025.38(1)