首页|一类具有任意初始能量的含对数非线性源分数阶p-Laplace抛物方程

一类具有任意初始能量的含对数非线性源分数阶p-Laplace抛物方程

扫码查看
本文研究一类具有对数非线性源的分数阶p-Laplace抛物方程的初边值问题.在亚临界初始能量条件下,利用凸方法证明了解在有限时刻爆破;在临界初始能量条件下,通过研究原方程的近似问题得到了整体解的存在性并建立了L2范数的衰减估计;在超临界初始能量条件下,给出了全局解和爆破解的充分条件.
A Class of Fractional Order p-Laplace Parabolic Equations with Logarithmic Nonlinear Sources and Arbitrary Initial Energy
This paper studies the initial boundary value problem for a class of fractional-order p-Laplace parabolic equations with logarithmic nonlinear sources.Under the condition of subcritical initial energy,we prove finite-time blow-up using the convexity method.For the case of critical initial energy,we obtain the existence of a global solution by studying an approximation of the original equation and establish the decay estimate of the L2 norm.Under the condition of supercritical initial energy,we provide sufficient conditions for the existence of global solutions and blow-up solutions.

Parabolic equationFractional p-LaplaceArbitrary initial energyGlobal solutionBlow-up

李兴泉、杨晗、冯玉丽

展开 >

西南交通大学数学学院,四川成都 611756

抛物方程 分数阶p-Laplace 任意初始能量 整体解 爆破

2025

应用数学
华中科技大学

应用数学

北大核心
影响因子:0.234
ISSN:1001-9847
年,卷(期):2025.38(1)