首页|(2+1)维 Korteweg-de Vries-Sawada-Kotera-Ramani方程中lump波和其它非线波碰撞前后的轨迹方程

(2+1)维 Korteweg-de Vries-Sawada-Kotera-Ramani方程中lump波和其它非线波碰撞前后的轨迹方程

扫码查看
本文首先基于Hirota双线性方法研究了(2+1)维Korteweg-de Vries-Sawada-Kotera-Ramani(KdVSKR)方程的多孤子解,接着利用长波极限法推导出KdVSKR方程的lump波与线波、呼吸波以及lump波的相互作用解.其次,根据lump波沿直线运动的特点,将KdVSKR方程的精确解沿着某些平行直线,在无穷远处进行逼近,进而推导出lump波与线波、呼吸波及lump波撞前后的轨迹方程,并给出了波峰高度以及波的相移.更进一步地,将上述情形推广到lump波与任意多个线波、任意阶呼吸波及任意阶lump波碰撞的情形.最后验证了lump波与其它非线性波的碰撞是弹性碰撞,并绘制了碰撞过程的相关图像.
Trajectory Equation of a Lump Before and After Collision with Other Waves for(2+1)-Dimensional Korteweg-de Vries-Sawada-Kotera-Ramani Equation
In this paper,we firstly employ the Hirota bilinear method to investigate multi-soliton solutions of the(2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani(KdVSKR)equation.Sub-sequently,a series of hybrid solutions of lump with line waves,breather waves,and lumps are derived for the KdVSKR equation utilizing the long wave limit method.Then,according to the characteristics of a lump wave moving along a straight line,the trajectory equation,phase shift,and wave peak of a lump before and after collision with line wave,breather wave and lump wave are obtained by approximating the solution of KdVSKR equation along some parallel orbits at infinity.Furthermore,the above situation is further generalized to encompass collisions between the lump wave and an arbitrary number of line waves,arbitrary-order breather waves,and arbitrary-order lump waves.Finally,the elastic collision between lump wave and other nonlinear waves was verified,and relevant images depicting the collision process were plotted.

Hirota bilinear methodLong wave limit methodTrajectory equationLump

黄文杰、夏亚荣、王璇、孙晓晴

展开 >

西安建筑科技大学理学院,陕西西安 710055

Hirota双线性方法 长波极限法 轨迹方程 Lump波

2025

应用数学
华中科技大学

应用数学

北大核心
影响因子:0.234
ISSN:1001-9847
年,卷(期):2025.38(1)