首页|基于深度学习方法的测井岩性识别研究

基于深度学习方法的测井岩性识别研究

扫码查看
采用机器学习方法进行自动岩性识别是当下的研究热点,神经网络作为具有代表性的机器学习方法,具有非线性建模能力强、结构灵活以及泛化性强等优点,目前已初步应用于岩性识别问题中.当下神经网络方法在测井岩性解释上的限制因素主要在于数据类别不均衡问题难以解决以及现有模型的可解释性较差.文章讨论了深度神经网络模型在纳岭沟地区铀矿测井解释的岩性分类问题上的应用,通过采用不同结构的模型缓解了类别不均衡对分类结果的影响,并着重分析了模型的层次结构和训练过程,更全面地解释了模型的内在机制和决策逻辑.结果显示,长短时记忆网络能在保持较高训练效率的同时获得高于80%的识别精度,8层全连接网络能达到90%以上的精度,但是需要的计算资源较大,训练时间较久.以上模型可应用于不同环境和需求.文章为深度学习方法在岩性识别问题上的应用提供了有益的见解和经验,具有一定参考价值.
Deep Learning Based Lithology Recognition of Well Logging Data
Machine learning is mainstream the for automatic lithology identification,as representative machine learning methods,neural networks has many advantage such as strong non-linear modeling capability,flexible structure,and robust generalization.The current constrain factors of nural network methods in well logging lithology recognition are mainly the imbalanced data and the limited interpretability of existing models.This paper discussed the approaches to overcome the problems of deep neural network models in the lithology classification of well logging data in Nalingou uranium deposit.By employing models with different structures,the impact of class imbalance on classification results has been alleviated.The paper focused on the analysis of the model's hierarchy and training process,providing a more comprehensive understanding of mechanisms and decision logic of learning models.The results indicated that the long short-term memory networks and the 8-layer fully connected neural networks have advantages in efficiency and accuracy respectively,and can be applied to different environments and requirements.

uranium well logginglithology identificationdeep learningquantitative analysis

周渊凯、刘祜

展开 >

核工业北京地质研究院,北京 100029

铀矿测井 岩性识别 深度学习 量化分析

中核集团集中研发项目

中核科发2021-143号

2024

铀矿地质
中国核学会铀矿地质学会

铀矿地质

CSTPCD
影响因子:0.714
ISSN:1000-0658
年,卷(期):2024.40(2)
  • 36