首页|基于KC-SLPA算法的重叠社区检测算法研究

基于KC-SLPA算法的重叠社区检测算法研究

Overlapping Community Detection Algorithm Based on KC-SLPA Algorithm

扫码查看
针对标签传播的思想在复杂网络上进行重叠社区发现,提出一种优化的重叠社区检测算法KC-SLPA.综合考虑网络结构的局部以及全局属性指标,融合K-shell与集聚系数的节点重要性来度量节点的影响力分数,节点影响力排序固定访问顺序,减少算法的随机性;提出改进的Speaker-Listener规则,根据标签出现频率的平均值进行标签传播,避免标签选择的随机性问题;引入改进的节点相似度对出现多个Speaker标签做进一步处理,提高社区的检测质量.分别在合成网络与真实数据集上进行验证,实验结果表明,该算法能够在不同规模的网络中具有较高的稳定性且检测重叠社区的质量较好.
An optimized overlapping community detection algorithm KC-SLPA is proposed based on the idea of la-bel propagation for overlapping community discovery on complex networks.By comprehensively considering the lo-cal and global attribute indicators of network structure,the node importance is measured by fusing the node influ-ence score of K-shell and clustering coefficient,reducing the randomness of the algorithm through the fixed access order of node influence ranking;an improved Speaker-Listener rule is proposed,which propagates labels based on the average frequency of label occurrences,avoiding the randomness problem of label selection;an improved node similarity is introduced to further process multiple Speaker labels,improving the quality of community detection.Experiments are conducted on both synthetic networks and real datasets,and the results show that the algorithm has high stability in networks of different sizes and detects overlapping communities with good quality.

complex networkoverlapping community detectionlabel disseminationK-shell

李馨玲、李赵兴、袁威龙

展开 >

榆林学院 信息工程学院,陕西 榆林 719000

复杂网络 重叠社区检测 标签传播 K-shell

陕西省科学计划项目

2019-kjj065

2024

榆林学院学报
榆林学院

榆林学院学报

影响因子:0.19
ISSN:1008-3871
年,卷(期):2024.34(5)