首页|引入环境变量的香格里拉市高山松碳储量估测

引入环境变量的香格里拉市高山松碳储量估测

Estimating the Pinus densata Carbon Storage of Shangri-La by Environmental Variables

扫码查看
森林碳储量是森林固碳能力的重要参考指标,准确估算森林碳储量对陆地碳循环具有重要意义.以香格里拉市1987-2017年Landsat TM/OLI遥感影像、森林资源连续清查数据和地形数据为主要数据源,利用Pearson相关性法、Spearman相关性法、Kendall's τ相关性法、距离相关性法和决策树法筛选预测变量,并引入不同环境变量结合随机森林(RF)模型估测香格里拉市高山松碳储量.结果显示:(1)在不同方法筛选出的预测变量中,偏度、角二阶矩等纹理因子与高山松碳储量相关性最高;(2)通过决策树法筛选出的变量组合所构建的RF模型效果最优,其R2为0.845,RMSE为10.076 t/hm2,rRMSE为29.254%,P为0.747;(3)引入环境变量后,精度都有不同程度提升,其中地表温度对模型精度的提升最高,其R2提高了 4.80%,RMSE降低了 1.71 t/hm2,rRMSE降低了 5.391%,P提高了 6.60%;(4)1987-2017年,香格里拉市高山松碳储量时空变化较明显,高山松碳储量增加了 651.266×104t.因此,不同的变量筛选方法会影响碳储量估测的准确性,同时引入环境变量能够提高模型估测精度,研究结果可为后续基于遥感的碳储量估测提供参考.
Forest carbon storage is an important reference index of forest carbon fixation capacity.It is of great signif-icance to estimate forest carbon storage accurately for terrestrial carbon cycle.Based on the Landsat TM/OLI images and the continuous inventory sample plots during 1987 to 2017 of Shangri-La and the terrain data,the Pearson coef-ficient,Spearman coefficient,Kendall's τ coefficient,distance correlation coefficient and decision tree methods were used to extract the predictive variables,and the environmental variables were combined with random forest(RF)to estimate the carbon storage of Pinus densata in Shangri-La.The results show that:(1)Among the predictive varia-bles selected by different methods,the texture variables such as Skewness and Second Moment are highly correlated with carbon storage of P.densata.(2)The decision tree method is superior to other methods,with the fitted results R2=0.845,RMSE=10.076 t/hm2,rRMSE=29.254%,and P=0.747;(3)The modeling accuracy is improved to some extent after introducing environmental variables.Among all environmental variables,the result of RF model with land surface temperature was best.R2 is increased by 4.80%,RMSE is decreased by 1.71 t/hm2,rRMSE is de-creased by 5.391%,and P is increased by 6.60%.(4)The carbon storage of P.densata in Shangri-La changed obviously in time and space from 1987 to 2017.The carbon storage of P.densata has increased 6.51 million t.Different variables selection methods of predictive variables can affect the accuracy of carbon storage estimation and adding environmental variables into the RF model can improve the accuracy,which can provide reference for the subsequent carbon storage estimation based on remote sensing.

carbon storagevariables selectionrandom forestenvironmental variablesPinus densata

殷唐燕、张加龙、廖易、王飞平、曹军、和云润、陈朝情、肖庆琳

展开 >

西南林业大学林学院,云南 昆明 650224

西北农林科技大学机械与电子工程学院,陕西 杨陵 712100

碳储量 变量筛选 随机森林 环境变量 高山松

云南省高层次人才培养支持计划"青年拔尖人才"专项(2020)国家自然科学基金国家自然科学基金

YNWR-QNBJ-2020-1643226039031860207

2024

西部林业科学
云南省林业科学院 云南省林学会

西部林业科学

CSTPCD北大核心
影响因子:0.807
ISSN:1672-8246
年,卷(期):2024.53(1)
  • 46