首页|基于树种随机效应的东北林区主要针叶树种含碳量模型构建

基于树种随机效应的东北林区主要针叶树种含碳量模型构建

扫码查看
为准确估算东北林区针叶树种含碳量,通过林木易测因子推算难于测定的单木含碳量.基于黑龙江省 3种针叶树的 129 株解析木数据,分析 4 种树木各组分(即树干、树枝、树叶和树根)的含碳率差异,并采用似乎不相关回归(SUR)方法构建树木各组分一元含碳量SUR模型(SUR1)和二元含碳量SUR模型(SUR2),并在SUR模型的基础上引入树种混合效应,进而构建似乎不相关混合效应(SURM)模型(SURM1 和SURM2).采用随机抽样的方法选择样木构建校正样本,用于计算各个树种的随机效应参数,并评估模型在不同样本量下的预测能力.结果显示:(1)引入树种混合效应后,枝和叶的含碳量模型拟合效果改善较为明显,R2a 均提高17%以上,干和根含碳量模型的R2a 分别提高 6%和 13%;(2)SURM2 在树干含碳量的拟合和预测精度上优于SURM1,在树叶、树枝和树根含碳量的拟合和预测精度上与SURM1 差异不大;(3)当使用随机抽取的 3 棵株样木计算树种水平随机效应时,SURM模型的预测表现要优于SUR模型和仅考虑固定效应的SURM模型.在基础的SUR模型系统中引入随机效应可提高模型的预测精度.本研究推荐使用SURM模型预测东北林区 3 种针叶树含碳量,为东北林区针叶树种含碳量的估算提供参考.
Construction of Carbon Content Models for Major Coniferous Tree Species in The Northeastern Forest Based on Tree Species Random Effects
To accurately estimate the carbon content of coniferous tree species in the northeastern forest region,in-dividual tree carbon content,which is difficult to measure directly,was inferred using easily measurable forest inven-tory parameters.Based on data from 129 dissected trees of three coniferous tree species in Heilongjiang Province,differences in carbon content among four tree components(i.e.,stem,branch,leaf,and root)were analyzed.Seem-ingly Unrelated Regression(SUR)methods were employed to construct single-variable carbon content SUR models(SUR1)and two-variable carbon content SUR models(SUR2).Additionally,species-level mixed effects were intro-duced into the SUR models to construct Seemingly Unrelated Mixed Effects Regression(SURM)models(SURM1 and SURM2).Random sampling was utilized to select calibration samples for estimating species-level random effects parameters,and evaluate the predictive ability of the model at different sample sizes.The results showed that:(1)The introduction of species-level mixed effects significantly improved the fitting accuracy of models for branches and leaves,with R2a values increasing by over 17%,and by 6%and 13%for stems and roots,respectively;(2)SURM2 outperformed SURM1 in the fitting and prediction accuracy of stem carbon content,with no significant difference observed in the fitting and prediction accuracy of leaf,branch,and root carbon content;(3)When using three randomly selected sample trees to compute species-level random effects,the predictive performance of SURM models was superior to that of SUR models and SURM models considering only fixed effects.Introducing random effects into the basic SUR model system can enhance predictive accuracy.This study recommends using SURM mod-els to predict the carbon content of three coniferous tree species in the northeastern forest region,providing valuable insights for estimating carbon content in this region.

carbon contentconiferous speciesseemingly unrelated mixed effect modelmodel calibration pre-diction

谷子航、马爱云、谢龙飞、董利虎

展开 >

东北林业大学 林学院,黑龙江 哈尔滨 150040

北华大学 林学院,吉林 吉林 132013

含碳量 针叶树 似乎不相关混合效应模型 模型校正预测

国家自然科学基金项目

31971649

2024

西部林业科学
云南省林业科学院 云南省林学会

西部林业科学

CSTPCD北大核心
影响因子:0.807
ISSN:1672-8246
年,卷(期):2024.53(3)
  • 33