首页|行政法如何应对生成式人工智能——基于算法、训练数据和内容的考察

行政法如何应对生成式人工智能——基于算法、训练数据和内容的考察

扫码查看
生成式人工智能具有更复杂的算法,需要海量训练数据,能够作为内容生产者与用户共同生产新内容,因而带来或放大了行政法层面的治理难题,包括算法黑箱、算法控制权分散化、高质量训练数据短缺、训练数据合法性,以及内容治理等.尽管国家制定了《生成式人工智能服务管理暂行办法》,但它受制于效力位阶,不足以解决行政法层面的治理难题.为此,在算法方面,宜创设面向用户的算法说明义务和新的算法安全评估制度,并根据算法控制主体之间的关系构建相应的监管制度.在训练数据方面,完善公共数据开放制度,建立训练数据备案制度和合法性信任机制.在内容治理方面,区分生产环节和传播环节的内容治理,内容生产环节的规制宜宽松,内容传播环节的规制宜严格.
How should Administrative Law Respond to Generative Artificial Intelligence——Based on Algorithms,Training Data and Content
Generative artificial intelligence(GAI)employs more complicated algorithms,requires massive training data,and enables collaborative content creation between producers and users.This exacerbates governance challenges at the administrative law level,including issues such as algorithmic opacity,decentralized control over algorithms,scarcity of high-quality training data,legality of training data,and content governance.Although the government has formulated the"Interim Measures for the Management of Generative Artificial Intelligence Services",its effectiveness is limited in addressing these administrative law governance challenges.Therefore,it is necessary to establish obligations for algorithm transparency towards users and a new algorithm security assessment system.Additionally,regulatory frameworks should be developed based on the relationships between algorithmic control entities.Regarding training data,enhancing the open access to public data,establishing a system for recording training data,and ensuring its legality are essential.For content governance,regulations should differentiate between governance during content production and dissemination stages,advocating for a lenient approach towards content production and a strict one towards content dissemination.

Generative Artificial IntelligenceAlgorithmTraining DataContent Governance

康骁

展开 >

广东外语外贸大学广东法治研究院

生成式人工智能 算法 训练数据 内容治理

2024

云南社会科学
云南省社会科学院

云南社会科学

CSSCICHSSCD北大核心
影响因子:0.532
ISSN:1000-8691
年,卷(期):2024.(4)
  • 23