首页|基于改进Deeplabv3+的瓷砖表面缺陷检测

基于改进Deeplabv3+的瓷砖表面缺陷检测

扫码查看
针对目前瓷砖表面缺陷检测时存在的模型运行速度慢、边缘特征提取不准确等问题,提出一种改进Deeplabv3+的瓷砖表面缺陷检测方法.首先使用轻量级的主干网络Mo-bileNetv2替换Deeplabv3+的主干网络Xception,该主干网络能降低模型的复杂度,减少计算量,提高算法运行速度;再引入注意力机制模块CBAM,使改进后的算法更加关注边缘缺陷信息和小尺度缺陷信息,抑制非必要信息,提高分割精度.实验证明,改进后网络的MPA 值达到 96.41%,MIou 值达到 91.65%,FPS 为 47.44,Accuracy 值为 94.88%,相比改进前的模型指标分别提升6.33%、7.76%、5.45、4.56%,分割精度和检测速度都有明显提升.实验结果充分证明改进后的算法能够有效完成瓷砖表面缺陷检测任务.
Tile Surface Defect Detection Based on Improved Deeplabv3+
Aiming at the problems of slow model operation and inaccurate edge feature extraction in tile surface de-fect detection,an improved Deeplabv3+algorithm is proposed.Firstly,the lightweight network MobileNetv2 is used to replace the backbone network of Xception,which can reduce the complexity and the amount of calculation of the model,and improve the speed of algorithm operation.Then,the attention mechanism module(Convolutional Block Attention Module,CBAM)is introduced to make the improved algorithm pay more attention to edge defect informa-tion and small-scale defect information,suppress unnecessary information and improve segmentation accuracy.Ex-perimental results show that the values of MPA,MIou,FPS and Accuracy of the improved network are 96.41%,91.65%,47.44,and 94.88%,respectively,which are 6.33%,7.76%,5.45 and 4.56%higher than those of the model before the improvement,and the segmentation accuracy and detection speed are significantly improved.It fully proves that the improved algorithm provides an effective approach to tile surface defect detection.

Deeplabv3+algorithmMobileNetv2 networktile surface defectattention mechanism

汪颖、娄树理

展开 >

烟台大学物理与电子信息学院,山东烟台 264005

Deeplabv3+算法 MobileNetv2网络 瓷砖表面缺陷 注意力机制

山东省自然科学基金

ZR2019LZH016

2024

烟台大学学报(自然科学与工程版)
烟台大学

烟台大学学报(自然科学与工程版)

影响因子:0.373
ISSN:1004-8820
年,卷(期):2024.37(1)
  • 17