首页|基于LSTM-LightGBM模型的烟草存销比层次化预测方法

基于LSTM-LightGBM模型的烟草存销比层次化预测方法

扫码查看
基于LSTM和LightGBM算法,结合零售商的地理位置和档位信息,构建了 一个层次化模型,用于准确预测烟草产品的存销比.该模型首先利用LSTM网络对不同地区和档位的整体存销比进行预测.随后,将得到的整体存销比作为LightGBM的辅助输入,用于预测个体零售商销售的每一类卷烟的存销比.本模型逐步融合数据的宏观和微观特征,对某地烟草实际销售数据的实验结果表明,LSTM-LightGBM模型具有较好的预测精度.
A Hierarchical Forecasting Method for Tobacco Inventory-to-Sales Ratio Based on LSTM-LightGBM Model
The paper employs the LSTM-LightGBM algorithm and incorporates the geographical location and grade information of retailers to develop a hierarchical model for accurately forecasting the inventory-to-sales ratio of tobac-co products.The model initially uses the LSTM network to forecast the overall inventory-to-sales ratio across differ-ent regions and grades.Subsequently,the obtained overall inventory-to-sales ratio is utilized as supplementary in-put for LightGBM to predict the inventory-to-sales ratio for each type of cigarette sold by individual retailers.The proposed model progressively combines macro-and micro-level features of the data.The validation results,using actual tobacco sales data from a specific region,demonstrate the superior predictive accuracy of the proposed ap-proach.

tobaccoinventory-to-sales ratioLSTMLightGBMhierarchical model

李家蕊、杨旻

展开 >

烟台大学数学与信息科学学院,山东烟台 264005

烟草 存销比 LSTM LightGBM 层次化模型

山东省自然科学基金资助项目

ZR2021MA010

2024

烟台大学学报(自然科学与工程版)
烟台大学

烟台大学学报(自然科学与工程版)

影响因子:0.373
ISSN:1004-8820
年,卷(期):2024.37(3)
  • 2