首页|基于深度学习的SMYD2抑制剂的筛选与活性评价

基于深度学习的SMYD2抑制剂的筛选与活性评价

扫码查看
使用2 个深度学习模型(Chemprop和RTMScore)从TopScience商业数据库中筛选潜在的SMYD2 抑制剂,再使用CCK-8 法测定化合物抑制活性,并分别采用细胞克隆和细胞划痕实验测定化合物抗A549 细胞增殖、迁移能力,最终用细胞热转移实验和蛋白质印记实验验证化合物5 与蛋白质的结合能力.结果表明,深度学习模型筛选出的化合物 5对A549 细胞增殖具有明显抑制作用(抑制率≥80%),IC50 为 10.89 μmol/L;给予 10 μmol/L的化合物 5 后,A549 细胞的克隆形成数和迁移面积均明显少于对照组(P<0.05).细胞热转移实验证明化合物5 与SMYD2 能够结合.
Screening and Activity Evaluation of SMYD2 Inhibitors Based on Deep Learning
Two deep learning models,Chemprop and RTMScore,were used to screen for potential SMYD2 inhibi-tors from the TopScience commercial database.The inhibitory activity of the potential compounds was then deter-mined using the CCK-8 method,and their effects on the anti-proliferation and migration of A549 cells were assessed using cell cloning and cell scratch,respectively.Finally,the binding ability of the compound 5 bound to SMYD2 was verified using cellular thermal shift assay and Wesrern blotting.The results showed that compound 5,identified by the deep learning model,exhibited significant inhibitory effects on the proliferation of A549 cells(inhibition rate≥80%)with a IC50 value of 10.89 μmol/L.Treatment with 10 μmol/L of compound 5 resulted in a significant reduction in both the number of clones formed and the migration area of A549 cells compared to the control group(P<0.05).The cellular thermal shift assay confirmed that compound 5 could bind to SMYD2.

deep learningSMYD2 inhibitorproliferation inhibition

刘小倩、朱艳娟、冯大为、王璐琪、刘钰杭、芦静

展开 >

烟台大学药学院,分子药理和药物评价教育部重点实验室(烟台大学),新型制剂与生物技术药物研究山东省高校协同创新中心,山东 烟台 264005

深度学习 SMYD2抑制剂 增殖抑制

泰山学者项目

2207070499

2024

烟台大学学报(自然科学与工程版)
烟台大学

烟台大学学报(自然科学与工程版)

影响因子:0.373
ISSN:1004-8820
年,卷(期):2024.37(4)