首页|VEC中基于深度强化学习的依赖性任务卸载方案

VEC中基于深度强化学习的依赖性任务卸载方案

扫码查看
随着自动驾驶、增强现实(Augmented Reality,AR)等低时延需求的车载应用增多,实时性任务卸载成为车联网(Internet of Vehicle,IoV)用户面临的新挑战.多数卸载方案忽略了AR等应用衍生的计算任务之间或任务内部的依赖关系,将任务卸载到边缘服务器处理,导致任务计算时延过长、卸载失败率升高.同时受车辆移动性、任务信息、服务器可用资源等因素实时变化的影响,卸载方案需要针对不同时刻的环境状态进行调整.因此提出一种基于深度强化学习(Deep Reinforcement Learn-ing,DRL)的依赖性任务卸载方案.该方案在车载边缘计算(Vehicular Edge Computing,VEC)框架下,将依赖性任务建模为有向无环图,利用矩阵表示图中各子任务间的依赖关系;将以最小化计算时延为目标的优化问题构建成马尔科夫决策过程(Markov Decision Process,MDP),采用DRL算法深度Q网络(Deep Q Network,DQN)解决MDP中状态转移概率的求解问题,并确定卸载决策.仿真实验评估了该方案与已有方案在计算时延、卸载失败率方面的性能差异,结果表明,该方案能够在任务截止时间内完成并有效降低计算时延和卸载失败率.
Dependency-Based Task Offloading Scheme in VEC Using Deep Reinforcement Learning
With the increasing demand for low-latency vehicular applications such as automatic driving and aug-mented reality(AR),real-time task offloading has become a new challenge for Internet of Vehicle(IoV)users.Many offloading schemes overlook the dependencies between computational tasks or within tasks themselves,partic-ularly those arising from AR applications.This oversight leads to excessive computation delays and higher offloading failure rates when tasks are offloaded to edge servers.Additionally,due to the dynamic nature of factors such as ve-hicle mobility,task information,and available server resources,offloading schemes need to be adjusted in real-time according to the environmental state.To address these issues,we propose a dependency-based task offload-ing scheme using Deep Reinforcement Learning(DRL).In the Vehicular Edge Computing(VEC)framework,this scheme models dependent tasks as directed acyclic graphs and uses matrices to represent the dependencies among subtasks;The optimization problem,which aims to minimize computation delay,is formulated as a Markov Deci-sion Process(MDP).The DRL algorithm,Deep Q Network(DQN),is employed to solve the state transition prob-abilities in the MDP and determine the offloading decisions.Simulation experiments evaluate the performance of this scheme against existing schemes in terms of computation delay and offloading failure rates.The results demonstrate that this scheme can complete tasks within their deadlines while effectively reducing computation delays and offload-ing failure rates.

automatic drivingvehicular edge computingdependency-based computational tasksdeep rein-forcement learningcomputational offloading

孙慧婷

展开 >

烟台职业学院,山东 烟台 264670

自动驾驶 车载边缘计算 依赖性计算任务 深度强化学习 计算卸载

烟台职业学院2024年度青年教师教学改革研究项目

YZQN202418

2024

烟台职业学院学报
烟台职业学院

烟台职业学院学报

影响因子:0.632
ISSN:1673-5382
年,卷(期):2024.19(2)