首页|基于张量分解的多模态大数据检索方法

基于张量分解的多模态大数据检索方法

扫码查看
多模态检索是当前社交媒体检索中一类重要的研究方向.大规模、高维度的多模态数据具有数据量大、结构异质等特性,如何在保持多模态数据完整不破坏的前提下挖掘隐藏的特征从而满足多模态间相似性的计算,成为亟需解决的难题.传统的检索方法,诸如矩阵分解、子空间方法、基于深度学习方法等,既采用了二段式关联学习方式而忽略高层语义信息,又缺少考虑数据分布的内在结构,如稀疏性、低秩等特性.文章融合多模态数据的非线性流形结构,提出结合流形学习的多模态检索方法,在张量分解基础上通过流形的度量和距离对高维多模态数据进行处理分析,并在真实数据集上进行实验验证,实验结果显示该方法能促进检索效果的提升.
A Multi-Modal Big Data Retrieval Method Based on Tensor Decomposition
Multi-modal retrieval is currently a significant research direction in social media retrieval.Large-scale,high-dimensional multi-modal data is characterized by its vast volume and heterogeneous structure.A pressing challenge is how to uncover hidden features while preserving the integrity of multi-modal data to facilitate similarity calculations across different modalities.Traditional retrieval methods,such as matrix decomposition,sub-space methods,and deep learning-based approaches,often employ a two-stage correlation learning process that overlooks high-level semantic information and fails to consider the intrinsic structure of the data,such as sparsity and low-rank properties.The article combines the nonlinear manifold structure of multi-modal data to propose a multi-modal retrieval method that integrates manifold learning.Building upon tensor decomposition,this method processes and analyzes high-dimensional multi-modal data using manifold metrics and distances.The approach is validated through experiments on real datasets,demonstrating its ability to enhance retrieval performance.

multi-modal retrievalintrinsic structuretensor decompositionmanifold

于彩霞、崔蕾、初永玲、郭海凤

展开 >

烟台职业学院,山东 烟台 264670

金陵科技学院,江苏 南京 210000

多模态检索 内在结构 张量分解 流形

山东省艺术科学重点课题2023年烟台职业学院研究横向课题

L2024Z05100515HX2023043

2024

烟台职业学院学报
烟台职业学院

烟台职业学院学报

影响因子:0.632
ISSN:1673-5382
年,卷(期):2024.19(2)