首页|考虑基因检测误差的癌症患者临床用药辅助决策模型研究

考虑基因检测误差的癌症患者临床用药辅助决策模型研究

扫码查看
近年来,癌症基因检测和精准诊疗技术取得了突破性进展,靶向、免疫药物大量上市,患者生存率显著提高.然而,由于癌症极高的个体差异性,尽管癌症药物种类很多,每种药物仅适用于小部分患者.因此,辅助医生根据患者的基因检测结果预测药物的适用性是临床实践的关键问题.同时,由于生物学特性和生物信息学局限性,癌症基因检测精度不高;且检测工作环节多、误差传递后易放大、环节间数据大多不可解释,导致数据质量难以评估.本文从工程管理的角度出发,对基因检测的生产流程进行全局风险预测,提出一种考虑基因检测误差、基于肿瘤突变负荷指标的免疫疗法临床用药辅助决策模型,有效降低检测错误对决策判断的干扰,显著提高决策准确率.
Clinical Medication Assisted Decision-making Model Considering the Genetic Detection Errors for Cancer Patient
In recent years,breakthroughs have been made in tumor genetic detection and precision medicine,and a large variety of targeted and immunological agents have been launched in the market,resulting in significantly prolonged patient survival.However,despite the large variety of cancer agents,each drug is only indicated for a limited patient population due to the tremendous individual heterogeneity of tumors.As a result,supporting physicians in predicting the acceptability of medications for patients based on the results of genetic detection is crucial for clinical practice.Meanwhile,due to biological characteristics and bioinformatics limitations,the accuracy of cancer genetic detection is low.Moreover,it is difficult to judge the data quality due to the several phases in the detection procedure,the easily magnified faults after transmission,and the unintelligible data between the steps.Therefore,we present a global risk prediction for the production process of genetic detection from the engineering management perspective and propose a clinical decision model for supporting immunotherapy doses based on tumor mutation burden biomarkers considering the genetic detection errors.The model presented in this paper can effectively reduce the interference of error rate on decision judgment,greatly enhancing the accuracy of decisions.

cancer precision medicinetumor genetic detectiondetection qualityrisk predictionmachine learning applicationclinical assisted decision-making

王以瑄、王嘉寅、赖欣、孙新宇、刘晶晶

展开 >

南京航空航天大学 自动化学院,江苏 南京 211106

西安交通大学计算机科学与技术学院,陕西 西安 710049

合肥工业大学 管理学院,安徽合肥 230009

合肥工业大学过程优化与智能决策教育部重点实验室,安徽合肥 230009

西安交通大学管理学院,陕西 西安 710049

展开 >

癌症精准诊疗 癌症基因检测 检测质量 风险预测 机器学习应用 临床辅助决策

国家自然科学基金资助项目国家自然科学基金资助项目

7229358162302215

2024

工程管理科技前沿
合肥工业大学预测与发展研究所

工程管理科技前沿

CSTPCDCSSCICHSSCD北大核心
影响因子:1.084
ISSN:2097-0145
年,卷(期):2024.43(2)
  • 31