首页|高维部分线性模型的变量选择和估计

高维部分线性模型的变量选择和估计

扫码查看
考虑高维部分线性模型,提出了同时进行变量选择和估计兴趣参数的变量选择方法.将Dantzig变量选择应用到线性部分及非参数部分的各阶导数,从而获得参数和非参数部分的估计,且参数部分的估计具有稀疏性,证明了估计的非渐近理论界.最后,模拟研究了有限样本的性质.
Variable Selection and Estimation in High-Dimensional Partially Linear Models
In this paper, we propose an approach for achieving simultaneously variable selection and estimation for the linear and nonparametric components in high-dimensional partially linear models. We use Dantzig selector, applied to the linear part and various derivatives of nonpararnetric component, to achieve sparsity in the linear part and produce nonparametric estimators. Non-asymptotic theoretical bounds on the estimator error are obtained. The finite sample properties of the proposed approach are investigated through a simulation study.

Partially linear modelvariable selectionDantzig selectorSCAD

杨宜平、薛留根

展开 >

重庆工商大学数学与统计学院,重庆,400067

北京工业大学应用数理学院,北京,100124

部分线性模型 变量选择 Dantzig选择 SCAD

国家自然科学基金国家自然科学基金Natural Science Foundation of BeijingResearch Fund of Chongqing Technology and Business University

1087101310871217107200420105609

2011

应用概率统计
中国数学会概率统计学会

应用概率统计

CSTPCDCSCD北大核心
影响因子:0.263
ISSN:1001-4268
年,卷(期):2011.27(2)
  • 3
  • 8