首页|带有自相关结构误差的多元函数型回归模型的变量选择

带有自相关结构误差的多元函数型回归模型的变量选择

扫码查看
多元函数型回归模型是经典多元线性模型的有益扩展.本文研究带有自相关结构误差的多元函数型回归模型的变量选择.我们基于Group SCAD(smoothly clipped absolute deviation)惩罚研究了模型中函数型协变量的变量选择和误差项的自相关阶数的确定问题.此外,我们在一定的正则性条件下证明了估计量的选择相合性和渐近正态性,并通过数值模拟说明提出方法在有限样本下具有良好性质.
Variable Selection in Multiple Functional Regression Model with Autoregressive Errors
Multiple functional regression models are a useful extension of classical multiple linear model.This paper focuses on the variable selection of multiple functional regression models with autore-gressive errors.Based on Group SCAD(Smoothly Clipped Absolute Deviation)penalty,we study the variable selection of functional covariates and the order of the autoregressive error term simultaneously.In addition,we provide the selection consistency and asymptotic normality under mild conditions,and demonstrate its performance through simulation studies.

multiple functional regression modelautoregressive errorGroup SCADselection consis-tency

李倩、谭祥勇、王黎明

展开 >

南京邮电大学经济学院,南京,210003

江西财经大学统计与数据科学学院,南昌,330013

上海财经大学统计与管理学院,上海,200433

多元函数型回归模型 自回归误差 Group SCAD 选择相合性

江苏省高校自然科学基金项目江苏省高校哲学社会科学项目南京邮电大学科研启动基金项目国家自然科学基金项目国家自然科学基金项目江西省自然科学基金重点项目江西省自然科学基金资助项目中国博士后科学基金资助项目

21KJD1100042021SJA0099NYY220017122012601220141320212ACB20100620212BAB2110102022M711425

2024

应用概率统计
中国数学会概率统计学会

应用概率统计

CSTPCD北大核心
影响因子:0.263
ISSN:1001-4268
年,卷(期):2024.40(4)