渔业现代化2024,Vol.51Issue(5) :72-80.DOI:10.3969/j.issn.1007-9580.2024.05.009

基于改进YOLOv8n损失函数的克氏原螯虾体特征识别算法

Research on the identification algorithm of crayfish body features based on the improved YOLOv8n loss function

耿春新 王爱民 阎天宇 郁傲男 张昊轩 张武肖 阳程 刘兴国 朱浩 顾夕章 李进峰 邵鹏
渔业现代化2024,Vol.51Issue(5) :72-80.DOI:10.3969/j.issn.1007-9580.2024.05.009

基于改进YOLOv8n损失函数的克氏原螯虾体特征识别算法

Research on the identification algorithm of crayfish body features based on the improved YOLOv8n loss function

耿春新 1王爱民 2阎天宇 1郁傲男 3张昊轩 3张武肖 3阳程 4刘兴国 5朱浩 5顾夕章 6李进峰 7邵鹏8
扫码查看

作者信息

  • 1. 盐城工学院信息工程学院,江苏盐城 224051
  • 2. 盐城工学院信息工程学院,江苏盐城 224051;盐城工学院海洋与生物工程学院,江苏盐城 224051
  • 3. 盐城工学院海洋与生物工程学院,江苏盐城 224051
  • 4. 盐城工学院优集学院,江苏盐城 224051
  • 5. 中国水产科学研究院渔业机械仪器研究所,上海 200092
  • 6. 射阳六和饲料有限公司,江苏射阳 224300
  • 7. 江苏进峰农业科技有限公司,江苏建湖 224700
  • 8. 盐城市上水环境生物科技工程有限公司,江苏盐城 224051
  • 折叠

摘要

克氏原螯虾(Procambarus clarkii)产业发展迅速,然而仍面临智能化水平偏低的问题,在养殖及加工过程中主要通过人工肉眼观察克氏原螯虾规格及完整性并作出相关判断.为解决克氏原螯虾的智能识别问题,提出基于YOLOv8n识别克氏原螯虾的虾体、虾尾及螯足的算法.通过将原有损失函数CIoU替换为MPDIoU,并引入尺度因子ratio控制辅助边框的尺度大小用于计算损失,与MPDIoU损失函数相结合,提高边界框回归的准确性和效率,实现对克氏原螯虾虾体、虾尾及螯足的精准识别,为研究其分级智能化提供思路.结果显示,在YOLOv8n模型中加入Inner-MPDIoU的算法训练结果相比原有的CIoU损失函数识别率有所提高,mAP从83.7%提高到了 90.8%.研究表明,该算法模型有助于对克氏原螯虾的主要部位实现精准识别,对研究克氏原螯虾的智能化精准分级具有推动作用.

Abstract

The crayfish industry,primarily focused on Procambarus clarkii,is expanding rapidly but encounters challenges due to inadequate automation.Traditional manual visual inspection methods used for evaluating crayfish size and integrity during breeding and processing are labor-intensive and prone to errors.This study presents an improved algorithm based on the YOLOv8n framework to intelligently recognize and grade crayfish by accurately detecting the body,tail,and claws of Procambarus clarkii.The proposed approach introduces innovation by replacing the original loss function CIoU(Complete Intersection over Union)with MPDIoU(Modified Perfect Dark Intersection over Union).A novel scale factor,denoted as the ratio,has been introduced to adjust the size of the auxiliary bounding box within the loss calculation framework.This improvement,in conjunction with the MPDIoU loss function,notably enhances the accuracy and efficiency of bounding box regression.As a result,it enables the precise detection of the distinct body parts of crayfish,a pivotal advancement in automating the grading process.Empirical assessments demonstrated substantial enhancements in recognition accuracy.The incorporation of Inner-MPDIoU into the YOLOv8n model elevated the mean Average Precision(mAP)from 83.7%to 90.8%across IoU thresholds ranging from 0.5 to 0.95.The results of this study highlight the effectiveness of the proposed algorithm in precisely recognizing critical elements of Procambarus clarkii.This investigation contributes to the overarching goal of attaining intelligent and accurate grading within the crayfish domain,potentially transforming conventional practices and enhancing industry productivity.The implications transcend mere automation,providing a groundwork for future exploration into intelligent systems tailored to the unique requirements of the crayfish industry.

关键词

克氏原螯虾/图像识别/YOLOv8/MPDIoU/深度学习

Key words

Procambarus clarkii/image recognition/YOLOv8/MPDIoU/deep learning

引用本文复制引用

基金项目

江苏现代农业产业技术体系建设专项资金项目(JATS[2023]471)

国家重点研发计划项目(2023YFD2402000)

盐城渔业高质量发展项目(2022yc003)

出版年

2024
渔业现代化
中国水产科学研究院渔业机械仪器研究所 中国渔船渔机渔具行业协会

渔业现代化

CSTPCD北大核心
影响因子:0.669
ISSN:1007-9580
段落导航相关论文