The thermal conductivity of iron under high pressure and high temperature from first-principles studies
Thermal conductivities of iron at high pressure and temperature are key parameters to constrain the dy-namics and thermal evolution of the Earth's core.In previous investigations,the thermal conductivity is mainly attributed to the electronic conductivity,we found that the contribution of lattice vibration to thermal conductivity under high pressure cannot be ignored.The phonon dispersion,Hugoniot equation of state and thermal transport properties of iron are calculated with the lattice dynamics and Boltzmann transport theory in this work.The simu-lation temperature for iron is 3500 K near the core-mantle boundary and 6500 K at Earth's inner core condi-tions.The thermal conductivities considering lattice vibration are respectively 112 W/mK near the core-mantle boundary and 200 W/mK at Earth's inner core conditions.