首页|改进YOLOv8在中药饮片自动识别标注中的研究与应用

改进YOLOv8在中药饮片自动识别标注中的研究与应用

扫码查看
目的 解决中药饮片种类繁多、形态相似,人工识别耗时费力且易出错的问题.方法 构建了包含201类中药饮片的数据集,并提出了一种轻量化改进的YOLOv8算法,具体改进包括在YOLOv8n网络中引入GhostC2f模块以降低模型参数量,采用DySnakeC2f模块以增强对纤细结构的灵敏度,替换主干网络的池化层为SimSPPF模块以加快推理速度,并加入坐标注意力(coordinate attention,CA)机制以增强对小尺寸目标的特征提取.结果 改进后的算法跨阈值平均精度(50%~95%)达到84.16%,较之前提高了4.39%,同时模型参数量减少了约15%.改进的模型成功部署在电脑客户端和手机APP中,构建了中药饮片自动化识别标注系统.结论 改进后的模型能够有效识别中药饮片,同时系统支持自动数据扩充和升级,从而为中药饮片的快速、准确识别提供了一种新方法.
Research and application of improved YOLOv8 in automatic recognition and annotation of traditional Chinese medicine decoction pieces
Objective Addressing the issues of the diverse types and similar shapes of traditional Chinese medicine decoction pieces (TCMDPs),which could make manual identification time-consuming,labor-intensive,and prone to errors. Methods A dataset containing 201 classes of TCMDPs was constructed,and a lightweight improved YOLOv8 algorithm was proposed. The specific improvements include introducing the GhostC2f module in the YOLOv8n network to reduce model parameters,adopting the DySnakeC2f module to enhance sensitivity to fine structures,replacing the pooling layers of the backbone network with SimSPPF to accelerate inference speed,and incorporating the coordinate attention (CA) mechanism to improve feature extraction for small-sized targets. Results The improved algorithm achieved a cross-threshold mean average precision (50%—95%) of 84.16%,representing an increase of 4.39% compared to the previous version,while reducing the model's parameter count by approximately 15%. The enhanced model was successfully deployed on both computer clients and mobile apps,creating an automated recognition and annotation system for TCMDPs. Conclusion The improved model effectively identifies TCMDPs,while the system supports automatic data expansion and upgrades,providing a novel approach for rapid and accurate identification of TCMDPs.

traditional Chinese medicine decoction piecesYOLOv8deep learningimage recognitionobject detection

孙兴、李杨、毛天驰、朱佳音、刘安、闫志翻、马金刚、郭丛

展开 >

山东中医药大学医学信息工程学院,山东 济南 250355

中国中医科学院中药研究所,道地药材品质保障与资源持续利用全国重点实验室,北京 100700

华润三九医药股份有限公司,广东 深圳 518000

中药饮片 YOLOv8 深度学习 图像识别 目标检测

2025

中草药
天津药物研究院,中国药学会

中草药

北大核心
影响因子:1.632
ISSN:0253-2670
年,卷(期):2025.56(1)