首页|流形正则化支持高阶张量机及其在行星齿轮箱半监督故障诊断中的应用

流形正则化支持高阶张量机及其在行星齿轮箱半监督故障诊断中的应用

扫码查看
本文提出了一种基于流形正则化支持高阶张量机(MRSHTM)的行星齿轮箱半监督故障诊断方法.在MRSHTM中引入CP分解挖掘张量数据中的内在结构信息,并定义张量逆多元二次核函数(Tensor-IMKF)以构建图拉普拉斯算子,从而更好地描述张量数据之间的流形结构.针对多分类问题,将一对多(OVR)策略引入MRSHTM中,提出一对多流形正则化支持高阶张量机(OVR-MRSHTM)模型.利用层次多尺度排列熵(HMPE)提取多通道振动信号的"通道×层次×尺度"三阶张量故障特征,并输入OVR-MRSHTM中进行自动识别.实验结果表明,所提算法能够在张量空间中实现稀缺标记样本下的行星齿轮箱智能故障诊断.
Manifold regularized support higher-order tensor machines for semi-supervised fault diagnosis of planetary gearboxes
In this study,a novel semi-supervised fault diagnosis of planetary gearboxes based on manifold regularized support high-er-order tensor machines(MRSHTM)is proposed.In the MRSHTM,CANDECOMP/PARAFAC(CP)decomposition is intro-duced to exploit the intrinsic structural information of tensor data,and tensor-based inverse multiquadric kernel function(Tensor-IMKF)is defined to construct a Laplacian operator.The constructed graph matrix can better describe the manifold structure be-tween tensor data.Besides,the one-versus-rest(OVR)strategy is introduced into the MRSHTM model for multi-class fault diag-nosis of planetary gearboxes.Hierarchical multiscale permutation entropy(HMPE)is adopted to extract the three-order tensor fea-tures"channel×hierarchical layer×scale",and then the extracted HMPE values are fed into OVR-MRSHTM for automatic fault identification.The results suggest that the proposed method can achieve semi-supervised fault diagnosis of planetary gearboxes in tensor space.

semi-supervised fault diagnosisplanetary gearboxestensor learningmanifold regularization

杨诚、何清波、贾民平、李志农、彭志科

展开 >

上海交通大学机械系统与振动国家重点实验室,上海 200240

东南大学机械工程学院,江苏 南京 211189

南昌航空大学无损检测技术教育部重点实验室,江西 南昌 330063

宁夏大学机械工程学院,宁夏 银川 750021

展开 >

半监督故障诊断 行星齿轮箱 张量学习 流形正则化

2025

振动工程学报
中国振动工程学会

振动工程学报

北大核心
影响因子:0.754
ISSN:1004-4523
年,卷(期):2025.38(1)