首页|分布式新能源接入电网的电能质量异常监测方法研究

分布式新能源接入电网的电能质量异常监测方法研究

扫码查看
电网电能质量易受到分布式新能源接入电网的冲击.冲击会破坏电压数据的完整性从而无法确定监测阈值,导致监测时间长、准确率低.为此,对分布式新能源接入电网的电能质量异常监测方法进行了研究.构建最小二乘支持向量机模型,通过综合学习粒子群算法确定模型超参数,利用优化后模型填补电压信号缺失数据.采用小波变换提取电能质量数据分布特征,获取每层能量分布与标准信号能量分布的差值.引入樽海鞘群优化算法优化反向传播(BP)神经网络初始权值和监测阈值,将差值输入训练完成的BP神经网络中,实现电能质量异常监测.试验结果表明,所提方法的查准率和查全率在 95%以上、训练时间和测试时间在 15 ms左右.该方法可准确、高效地监测到异常数据,从而保证电网的稳定运行.
Research on Power Quality Anomaly Monitoring Method for Distributed New Energy Access Power Grid
Power quality of power grid is vulnerable to shocks from distributed new energy access power grid.The shocks can destroy the integrity of voltage data and make it impossible to determine the monitoring threshold,resulting in long monitoring time and low accuracy.For this reason,the power quality abnormality monitoring method for distributed new energy access power grid is studied.A least squares support vector machine model is constructed,and the model hyperparameters are determined by an integrated learning particle swarm algorithm,and the optimized model is used to fill in the missing data of the voltage signal.The wavelet transform is used to extract the distribution characteristics of power quality data and obtain the difference between the energy distribution of each layer and the standard signal energy distribution.The back propagation(BP)neural network initial weights and monitoring thresholds are optimized by introducing the salp swarm optimization algorithm,and the difference values are input into the trained BP neural network to realize power quality abnormality monitoring.The experimental results show that the proposed method has an accuracy and completeness rate of more than 95%,and the training time and testing time are about 15 ms.The method can accurately and efficiently monitor the abnormal data and ensure the stable operation of the power grid.

Distributed new energyAccess power gridPower quality anomaly monitoringSalp swarm algorithmLeast squares support vector machineParticle swarm algorithm

周凤华、王艳芹、张海宁、燕凯、苗宏佳

展开 >

国网承德供电公司计量中心,河北 承德 067000

分布式新能源 接入电网 电能质量异常监测 樽海鞘群算法 最小二乘支持向量机 粒子群算法

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(3)
  • 12