首页|光伏发电系统最大功率跟踪方法研究

光伏发电系统最大功率跟踪方法研究

扫码查看
为改善现有光伏(PV)系统最大功率跟踪时易陷入局部最优的问题,提出一种改进的模因强化学习(RL)模型.首先,在分析PV系统等效电路基础上,建立部分遮光条件下PV系统发电模型.其次,提出一种结合模因和RL的寻优模型,可根据更新的反馈奖励快速搜索高质量的最优值,从而近似追踪PV系统的全局最大功率跟踪.最后,在改进模因RL模型中采用多组模因优化探索和利用策略,从而有效搜索局部最优和全局最优解.以某市气象数据为例,对所提模型进行仿真.仿真结果表明,所提模型的平均变异性最低,表明模型具有较强的鲁棒性.此外,所提模型在冬季产生的输出能量最高,表明模型能够有效跟踪PV最大功率,从而验证了模型的稳定性.
Research on Maximum Power Tracking Method of Photovoltaic Power Generation System
To improve the existing photovoltaic(PV)system which is easy to fall into local optimization when tracking the maximum power,an improved meme reinforcement learning(RL)model is proposed.Firstly,based on analyzing the equivalent circuit of the PV system,a power generation model of the PV system under partial shading conditions is established.Secondly,an optimization search model combining meme and RL is proposed,which can quickly search for high-quality optimal values based on the updated feedback rewards to approximate the global maximum power tracking of the PV system.Finally,a multi-group meme optimization exploration and exploitation strategy is used in the improved meme RL model to effectively search for both local optimal and global optimal solutions.The meteorological data of a city is used as an example to simulate the proposed model.The simulation results show that the proposed model has the lowest average variability,indicating that the model is robust.In addition,the proposed model produces the highest output energy in winter,indicating that the model can effectively track the maximum power of PV,which verifies the stability of the model.

Smart gridPhotovoltaic(PV)Maximum power trackingReinforcement learning(RL)modelMemeOptimization

牟令、陈俊、陈侃、杨德超、刘必武、滕易

展开 >

湖北能源集团新能源发展有限公司,湖北 武汉 430000

三峡大学信息技术中心,湖北 宜昌 443002

智能电网 光伏 最大功率跟踪 强化学习模型 模因 优化

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(4)
  • 11