首页|电力工程数据自动分类提取与分析技术研究

电力工程数据自动分类提取与分析技术研究

扫码查看
为解决目前电力工程数据处理过程中的数据种类复杂、规模庞大以及分析处理困难等问题,提出了一种基于改进K-means聚类算法和长短期记忆(LSTM)神经网络的电力工程数据自动分类提取与分析技术.针对传统K-means聚类算法存在K值选取不确定性强、电力数据与簇中心点的空间距离特性相关性较弱的缺陷,采用了一种基于阈值判定的K值选取及属性加权方法,对空间距离算法进行改进.同时,通过麻雀搜索算法(SSA)对LSTM加以优化,解决了传统网络在进行超参数选择时因存在不确定性而导致预测精度不足的问题.在公开电力工程数据集上的测试结果表明,该技术分类的准确率、容错率分别为92%和98%,对造价数据的预测准确率较为理想.该研究有助于工程数据的分析和预测.
Research on Automatic Classification,Extraction and Analysis Techniques for Electric Power Engineering Data
To solve the problems of complex data types,large scale and difficult analysis and processing in the current electric power engineering data processing process,an automatic classification,extraction and analysis techniques for electric power egineering data based on the improved K-means clustering algorithm and the long short-term memory(LSTM)neural network is proposed.Aiming at the defects of the traditional K-means clustering algorithm,such as the strong uncertainty of K value selection,and the weak correlation of spatial distance characteristics between electric power data and cluster centroids,a K value selection and attribute weighting method based on the threshold decision is adopted to improve the spatial distance algorithm.Meanwhile,the LSTM is optimized by the sparrow search algorithm(SSA),which solves the problem of insufficient prediction accuracy due to the existence of uncertainty when the traditional network performs hyper-parameter selection.The results of tests on public power engineering datasets show that the accuracy and fault tolerance of the techniques classification are 92%and 98%,respectively,and the prediction accuracy of the cost data is more satisfactory.The research contributes to the analysis and prediction of engineering data.

Power engineeringAutomated analysisK-means clustering algorithmData classificationLong and short-term memory(LSTM)Sparrow search algorithm(SSA)

雷振华、李小云、陈屹东、陈芃起、李雯乐

展开 >

湖南省电力有限公司经济技术研究院,湖南 长沙 410007

电力工程 自动化分析 K-means聚类算法 数据分类 长短期记忆 麻雀搜索算法

湖南省科技计划

S2022CXCPB0559

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(4)
  • 12