首页|电力通信数据流量异常的并行检测方法设计

电力通信数据流量异常的并行检测方法设计

扫码查看
数据流量异常监测是电力通信网络运行过程中不可缺少的环节,但异常监测过程易受不同信道流量冗余性、异常数据类型等问题的干扰,导致监测过程耗时较长和误差较大.为了解决上述问题,设计了一种电力通信数据流量异常的并行检测方法.采用自适应邻域算法对电力通信数据流量作降维处理,并通过并行的思路实现不同信道内电力通信数据流量的分解,从而有效地降低了数据流量的冗余性干扰.设计并行检测方法对数据流量作并行分解处理,将分解后的数据流量输入到检测模型中,通过计算样本点对应的异常得分,完成电力通信数据流量的异常监测.试验结果显示,该方法的均方误差小、时间消耗少、召回率高.该方法的电力通信数据流量异常监测性能较优,具有一定的实用价值.
Design of Parallel Detection Method for Power Communication Data Traffic Anomaly
Data traffic anomaly monitoring is an indispensable part of power communication network operation,but the anomaly monitoring process is susceptible to the interference of different channel traffic redundancy,anomalous data types and other problems,which leads to a long time-consuming monitoring process and large errors.To solve the above problems,a parallel detection method for power communication data traffic anomaly is designed.Adaptive neighborhood algorithm is used to do dimensionality reduction of power communication data traffic,and the decomposition of power communication data traffic in different channels is realized by the idea of parallelism,which effectively reduces the redundancy interference of data traffic.The parallel detection method is designed to do parallel decomposition processing on the data traffic,and the decomposed data traffic is inputted into the detection model to complete the anomaly monitoring of the power communication data traffic by calculating the corresponding anomaly scores of the sample points.The experimental results show that the method has small mean square error,low time consumption and high recall rate.The performance for anomaly monitoring of power communication data traffic of this method is superior and has certain practical value.

Power communcationDimension reductionParallel decompositionRandom binary treeAbnormal scoreParallel detectionSmall errorRedundant interference

刘璐

展开 >

北京科东电力控制系统有限责任公司,北京 100192

电力通信 降维 并行分解 随机二叉树 异常得分 并行检测 小误差 冗余干扰

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(4)
  • 12