首页|异构工业控制网络多源目标入侵自动识别研究

异构工业控制网络多源目标入侵自动识别研究

扫码查看
异构工业控制网络多源目标特征处在不断变化中,具有起伏性,导致入侵识别精准度较低.提出考虑数据特征实时变化的入侵自动识别方法,并应用到异构工业控制网络中.设定归一化入侵特征空间,将全部网络数据规范到该空间内,并根据最大值和最小值比对将超出范围数据重新作归一化处理.以时域矩阵偏度特征、峰度特征以及包络起伏度特征作为入侵特征提取类别,分别计算工业控制网络中三种特征数据大小.在此基础上,首先计算一组入侵数据样本在网络中的各项特征表现;然后将表现参数转换为聚类中心值,求解待识别目标与聚类中心间欧式距离;最后按照距离大小完成入侵目标自动识别.试验数据证明:该方法在工控网络中识别精准度较高,并可在多种网络攻击环境下实现精准识别.该方法具有较好的应用效果.
Research on Automatic Intrusion Recognition of Multi-Source Targets in Heterogeneous Industrial Control Network
Multi-source target features of heterogeneous industrial control network are in constant change with ups and downs,resulting in low accuracy of intrusion recognition.An automatic intrusion identification method considering real-time changes in data features is proposed and applied to heterogeneous industrial control network.The normalized intrusion feature space is set,all network data are normalized to this space,and the out-of-range data are renormalized according to the maximum and minimum value comparison.Taking the time-domain matrix skewness feature,kurtosis feature,and envelope undulation feature as the categories of intrusion feature extraction,the three kinds of feature data sizes in the industrial control network are calculated respectively.On this basis,a set of intrusion data samples are first calculated in the network of each feature performance;then the performance parameters are converted to the cluster center value,and the Euclidean distance between the target to be identified and the cluster center is solved;finally,the automatic identification of intrusion targets is completed in accordance with the distance size.The test data proves that the method has high recognition accuracy in the industrial control network,and can realize accurate recognition in variety of network attack environments.The method has good application effect.

Heterogeneous industrial control networkMulti-source targetsAutomatic intrusion recognitionEnvelope heaveCluster centerNormalization

饶广

展开 >

内江职业技术学院信息与电子学院,四川 内江 641100

异构工业控制网络 多源目标 入侵自动识别 包络起伏度 聚类中心 归一化处理

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(4)
  • 10