首页|新能源场站电力二次系统安全预警方法研究

新能源场站电力二次系统安全预警方法研究

扫码查看
新能源场站电力二次系统设备较多.其安全预警性相关数据存在明显高维性、复杂性的特点,不利于电力二次系统安全预警的效率和精度计算,导致预警性能较差.为此,提出新能源场站电力二次系统安全预警方法.采用拉普拉斯映射方法降低新能源场站电力二次系统的电力数据维数,将高维数据源空间中的初始电力数据映射至低维子空间.分别计算在x、y、z方向上电力数据的行向量和对角权值,获取优化数据,为系统安全预警提供训练样本.从波动程度、时间序列变化趋势和能量随机分布特点三个角度,提取电力数据安全预警特征,并输入到K-means聚类算法中,以确定特征聚类中心、实现安全预警.试验结果表明:所提方法预警效率、预警精度较高.
Research on Security Early Warning Method of Power Secondary System in New Energy Field Stations
New energy field station power secondary system has a large number of equipment.It's safety early warning related data exists obvious high dimensionality,complexity,is not conducive to the efficiency and accuracy of the power secondary system security early warning calculations,resulting in poor early warning performance.For this reason,the new energy field station power secondary system security early warning method is proposed.The Laplace mapping method is used to reduce the dimensionality of the power data in the power secondary system of the new energy field station,and the initial power data in the high-dimensional data source space is mapped to the low-dimensional subspace.The row vectors and diagonal weights of the power data in the x,y and z directions are calculated respectively to obtain the optimized data,which provide training samples for the system security warning.From the three perspectives of fluctuation degree,time series change trend and energy random distribution characteristics,the security warning features of power data are extracted and input into the K-means clustering algorithm to determine the feature clustering center and achieve security warning.The experimental results show that the proposed method has high warning efficiency and accuracy.

New energy field stationsPower secondary systemFeature extractionK-means clustering algorithmSafety warningHigh-dimensional data source space

蒋亚坤、王彬筌

展开 >

云南电力调度控制中心,云南 昆明 660011

新能源场站 电力二次系统 特征提取 K-means聚类算法 安全预警 高维数据源空间

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(4)
  • 10