首页|基于CA-GRU的污水处理厂出水总氮浓度预测研究

基于CA-GRU的污水处理厂出水总氮浓度预测研究

扫码查看
为了精确预测污水处理厂出水总氮浓度,以呼玛县某污水处理厂公开监测的污水出水水质数据为样本进行了研究.提出了一种基于卷积注意-门控循环单元(CA-GRU)网络的混合模型.首先,使用时间滑动窗口,将数据转换成连续的特征图以作为输入,并从中提取抽象特征.然后,将这些特征映射到网络模型中.最后,通过门控循环单元(GRU)网络模型获得预测值.试验结果显示,CA-GRU模型的均方根误差(RMSE)为0.172,平均绝对百分比误差(MAPE)为0.010.该结果比GRU网络模型低 0.108、0.016,比卷积神经网络(CNN)-GRU模型低0.027、0.005,比Attention-GRU模型低0.065、0.007.该结果表明,CA-GRU模型预测效果良好,利用CNN等模型有利于减少冗余信息的干扰.CA-GRU模型能够充分提取污水水质数据在时间和空间上的特征、更准确地预测出水水质总氮含量,具有较高的应用价值.
Research on Prediction of Total Nitrogen Concentration in Wastewater Treatment Plant Effluent Based on CA-GRU
To accurately predict the total nitrogen concentration of effluent from a wastewater treatment plant,the publicly monitored effluent wastewater quality data from a wastewater treatment plant in Huma county is used as a sample for the study.A convolutional attention-gated recurrent unit(CA-GRU)network hybrid model is proposed.Firstly,using a time sliding window,the data is converted into a continuous feature map as input,from which abstract features are extracted.Then,these features are mapped into a network model.Finally,the gated recurrent unit(GRU)network model is used to obtain the predicted values.The experimental results show that the root mean square error(RMSE)of the CA-GRU model is 0.172 and the mean absolute percentage error(MAPE)is 0.010.This result is lower than the GRU network model by 0.108,0.016,lower than the convolutional neural network(CNN)-GRU model by 0.027,0.005,and lower than the Attention-GRU model by 0.065,0.007.This result shows that the CA-GRU model prediction effect is good,and the use of models such as CNN is conducive to reducing the interference of redundant information.The CA-GRU model can fully extract the characteristics of wastewater water quality data in time and space,and can more accurately predict the total nitrogen content of effluent water quality,which is of high value for application.

WastewaterEffluent total nitrogen concentration predictionHybrid modelGated recurrent unit(GRU)Convolutional neural network(CNN)Time sliding window

吴婧、廖明潮

展开 >

武汉轻工大学数学与计算机学院,湖北 武汉 430000

污水 出水总氮浓度预测 混合模型 门控循环单元 卷积神经网络 时间滑动窗口

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(4)
  • 12