首页|基于热红外图像的光伏板热斑检测方法研究

基于热红外图像的光伏板热斑检测方法研究

扫码查看
光伏板长期处于室外环境,极易因污渍遮挡而产生热斑效应,进而影响光伏电站的安全和高效运行.针对该问题,对基于传统图像处理和基于机器学习的目标检测算法的热斑检测开展研究.基于传统图像处理,利用区域分割算法和边缘检测算法进行试验,并研究热斑检测的效果.基于机器学习,提出了一种改进型你只看一次第四版本(YOLOv4)的热斑检测方法.其中,数据集通过实地拍摄光伏板热斑搭配模拟热斑的方法来获取.试验结果表明,改进的YOLOv4 模型对数据集中的热斑检测指标交并比(IoU)达到92.31%、平均精度(AP)达到93.42%,均优于YOLOv4 模型的效果.该研究具有一定的工程应用价值.
Research on Hot Spot Detection Method of Photovoltaic Panel Based on Thermal Infrared Image
Photovoltaic(PV)panels,which have been in outdoor environment for a long time,are highly susceptible to hot spot effect due to stain shading,which in turn affects the safe and efficient operation of PV power plants.Aiming at this problem,research is carried out on hot spot detection based on traditional image processing and machine learning-based target detection algorithm.Based on traditional image processing,the region segmentation algorithm and edge detection algorithm are utilized to test and study the effect of hot spot detection.Based on machine learning,an improved you only look once version 4(YOLOv4)hot spot detection method is proposed.In this case,the dataset is obtained by field photographing the hot spots of PV panels paired with simulated hot spots.The experimental results show that the improved YOLOv4 model achieves 92.31%intersection over union(IoU)of hot spot detection indexes and 93.42%average precision(AP)in the dataset,which are both better than the effect of YOLOv4 model.This research has certain value for engineering application.

Photovoltaic(PV)panel hot spotTraditional image processingMachine learningTarget detectionYou only look once version 4(YOLOv4)Fault detection

毛羽、郑怀华、李隆、张傲

展开 >

浙江省送变电工程有限公司,浙江 杭州 310016

上海电力大学自动化工程学院,上海 200090

光伏板热斑 传统图像处理 机器学习 目标检测 你只看一次第四版本 故障检测

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(5)
  • 18