首页|基于改进CGWO-SVM算法的建筑能耗预测模型研究

基于改进CGWO-SVM算法的建筑能耗预测模型研究

扫码查看
建筑能耗预测能够反映建筑内部各分项能源消耗系统是否存在降耗空间,从而为节能减排工作提供指导.为了提高建筑能耗预测精度,提出了一种基于改进混沌灰狼优化-支持向量机(CGWO-SVM)算法的建筑能耗预测模型.针对传统灰狼优化(GWO)算法过早收敛和易于陷入局部最优解的问题,采用Tent混沌序列初始化种群、控制参数随机动态调整策略来平衡搜索能力.通过Cauchy变异操作降低算法陷入局部最优的概率,提出了改进CGWO.通过仿真测试,证明了CGWO算法在求解精度和稳定性方面优于GWO算法.利用该算法优化支持向量机(SVM),建立CGWO-SVM建筑能耗预测模型.采用实际建筑能耗数据进行测试.测试结果表明,CGWO-SVM算法的预测性能优于其他模型.CGWO-SVM算法可用于建筑能耗预测工作,具有较强的实际应用价值.
Study of Building Energy Consumption Prediction Model Based on Improved CGWO-SVM Algorithm
The prediction of building energy consumption can respond to whether there is any space for reduction of consumption in each sub-energy consumption system within a building,to provide guidance for energy saving and emission reduction work.In order to improve the accuracy of building energy consumption prediction,a building energy consumption prediction model based on improved chaotic gray wolf optimization-support vector machine(CGWO-SVM)algorithm is proposed.To address the problems of premature convergence and easy to fall into local optimal solutions of traditional gray wolf optimization(GWO)algorithm,Tent chaotic sequence initialization of the population,control parameter stochastic dynamic adjustment strategy is used to balance the search ability.Cauchy mutation operation reduces the probability of the algorithm to fall into the local optimal solution,and the improved CGWO is proposed.Through the simulation tests,it is proved that the CGWO algorithm is better than the GWO algorithm in terms of solution accuracy and stability.The algorithm is used to optimize the support vector machine(SVM)and establish the CGWO-SVM building energy consumption prediction model.The actual building energy consumption data are used for testing.The test results show that the prediction performance of the CGWO-SVM algorithm is better than other models.The CGWO-SVM algorithm can be used in the prediction work of building energy consumption,which has strong practical application value.

Building energy consumption predictionImproved chaotic gray wolf optimization(CGWO)Tent chaotic sequenceVariationSupport vector machine(SVM)

王首彬、回江贤、周艺萱、张斌

展开 >

天津城建大学控制与机械工程学院,天津 300384

中国电建市政建设集团有限公司,天津 300384

建筑能耗预测 改进混沌灰狼优化 Tent混沌序列 变异 支持向量机

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(5)
  • 18