首页|基于改进卷积对抗网络的燃机故障告警方法研究

基于改进卷积对抗网络的燃机故障告警方法研究

扫码查看
为保障燃气轮机发电机组的长期正常运转,对燃气轮机发电机组故障告警方法的研究需求迫切.提出一种基于改进卷积对抗网络的燃机故障告警方法.首先,对原始结构中的生成器与判别器分别作出结构改进,以提升模型的性能,并使模型直接输出量化的评价数值.接着,优化生成器与判别器的损失值计算函数,以扩展有效范围.最后,以某F型燃气轮机发电机组为对象开展试验.试验结果表明,该方法能够摆脱现有研究对标定故障数据集的依赖,对未知类别的数据完成符合定性估计的量化评价,并对多类未知数据的故障告警准确率均达到98%以上.该研究有助于城市绿色化、智慧化.
Research on Gas Turbine Fault Warning Method Based on Improved Convolutional Adversarial Network
To ensure the long-term normal operation of gas turbine generator sets,there is an urgent need for research on the fault warning method for gas turbine generator sets.A method of gas turbine fault warning based on improved convolutional adversarial network is proposed.Firstly,structural improvements are made to the generator and discriminator in the original structure respectively to enhance the performance of the model and make the model directly output quantized evaluation values.Then,the loss value calculation functions of the generator and discriminator are optimized to extend the effective range.Finally,the test is carried out with an F-type gas turbine generator set as the target.The experimental results show that the method can get rid of the dependence of existing research on calibrated fault data sets,complete the quantitative evaluation conforming to the qualitative estimation for unknown categories of data,and achieve more than 98%fault warning accuracy for multiple categories of unknown data.This research contributes to the greenization and intelligence of cities.

Deep learningGreen CityGas turbineGenerator setConvolutional adversarial networkFault warning

孙凯文、周红福、赵浩延

展开 >

上海工业自动化仪表研究院有限公司,上海 200233

深度学习 绿色城市 燃气轮机 发电机组 卷积对抗网络 故障告警

上海市2020年度"科技创新行动计划"国际科技合作基金资助项目

20510731600

2024

自动化仪表
中国仪器仪表学会 上海工业自动化仪表研究院

自动化仪表

CSTPCD
影响因子:0.655
ISSN:1000-0380
年,卷(期):2024.45(6)
  • 7